Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = offshore drilling floor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11301 KiB  
Article
Application of Multiple Geophysical Exploration Methods in the Exploration of Marine Sand Resources in the Northern Offshore Waters of the South China Sea
by Gang Yu, Xichong Hu, Jie Fang, Ying Yang, Yongcong Zhang, Jinhui Lin, Jingyi Liu and Libing Qian
J. Mar. Sci. Eng. 2024, 12(9), 1561; https://doi.org/10.3390/jmse12091561 - 5 Sep 2024
Cited by 2 | Viewed by 1196
Abstract
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local [...] Read more.
Marine sand, in addition to oil and gas resources, is the second-largest marine mineral resource. The rational development and utilization of marine sand resources are conducive to the growth of the marine economy. In the process of marketing marine sand in China, local authorities are required to delineate auctioned sand mining areas after a general survey, commonly referred to as preliminary exploration. Marine sand can be categorized into surface marine sand and buried marine sand. Buried marine sand deposits are buried beneath the sea floor, making it challenging to locate them due to their thin thickness. Consequently, there exist numerous technical difficulties associated with marine sand exploration. We conducted the preliminary research work in the waters off Guangdong Province of the South China Sea, employing a reduced drilling and identifying a potentially extensive deposit of marine sand ore. In this study, various geophysical methods such as sub-bottom profile survey, single-channel seismic survey, and drilling engineering were employed in the northern offshore waters of the South China Sea. As a result, two distinct marine sand bodies were delineated within the study area. Additionally, five reflective interfaces (R1, R2, R3, R4, and R5) were identified from top to bottom. These interfaces can be divided into five seismic sequences: A1, B1, C1, D1, and E1, respectively. Three sets of strata were recognized: the Holocene Marine facies sediment layer (Q4m), the Pleistocene alluvial and pluvial facies sediment layer (Q3al+pl), as well as the Pleistocene Marine facies sedimentary layer (Q3m). In total, two placers containing marine sand have been discovered during this study. We estimated the volume of marine sand and achieved highly favorable results of the concept that we are proposing a geologic exploration approach that does not involve any previous outcropping analogue study. Full article
Show Figures

Figure 1

13 pages, 5356 KiB  
Article
Design of a Display Structure for an Anti-Collision System of Offshore Drilling Units Based on the Digital Twin Concept
by Ki-Youn Kwon, Namkug Ku and Jaeyong Lee
J. Mar. Sci. Eng. 2022, 10(12), 1825; https://doi.org/10.3390/jmse10121825 - 28 Nov 2022
Cited by 4 | Viewed by 2556
Abstract
The drill floor of an offshore drilling facility is equipped with a collision avoidance system to prevent collisions between moving equipment. In this paper, we present the visualization of the collision avoidance system using the digital twin concept. By classifying the core technologies [...] Read more.
The drill floor of an offshore drilling facility is equipped with a collision avoidance system to prevent collisions between moving equipment. In this paper, we present the visualization of the collision avoidance system using the digital twin concept. By classifying the core technologies of the digital twin, the elements necessary for the visualization of the collision avoidance system are derived, and the information for visualization is organized. We conduct 3D visualization of equipment and design IO devices necessary for the visualization. The movement of the floater is considered, and a database is built to efficiently search for the information required for the retrieval of stored 3D information. A collision detection situation is generated by operating the equipment using the input device required for simulation. Collision information is displayed as designed, and it is confirmed that the switching of the display between the present and past time is operating normally. The entire system functions normally as designed, including the input/output with other databases and equipment operation. Implementing a digital twin for an offshore platform is a time-consuming and costly process. It is expected that the improved anti-collision system can be expanded for the digital twin of an entire offshore platform. Full article
Show Figures

Figure 1

28 pages, 4994 KiB  
Article
Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening
by Isabelle Moretti, Emyrose Brouilly, Keanu Loiseau, Alain Prinzhofer and Eric Deville
Geosciences 2021, 11(3), 145; https://doi.org/10.3390/geosciences11030145 - 22 Mar 2021
Cited by 56 | Viewed by 11231
Abstract
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, [...] Read more.
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, small depressions and vegetation gaps are observed. These depressions, called fairy circles, have similarities with the pockmark and vent structures recognized for long time in the sea floor when natural gas escapes but also differences. In this paper we present a statistic approach of the density, size, and shape of the fairy circles in various basins. New data from Brazil and Australia are compared to the existing database already gathered in Russia, USA, and again Brazil. The comparison suggests that Australia could be one of the most promising areas for H2 exploration, de facto a couple of wells already found H2, whereas they were drilled to look for hydrocarbons. The sum of areas from where H2 is seeping overpasses 45 km2 in Kangaroo Island as in the Yorke Peninsula. The size of the emitting structures, expressed in average diameter, varies from few meters to kilometers and the footprint expressed in % of the ground within the structures varies from 1 to 17%. However, globally the sets of fairy circles in the various basins are rather similar and one may consider that their characteristics are homogeneous and may help to characterize these H2 emitting zones. Two kinds of size repartitions are observed, one with two maxima (25 m and between 220 m ± 25%) one with a simple Gaussian shape with a single maximum around 175 m ± 20%. Various geomorphological characteristics allow us to differentiate depressions of the ground due to gas emissions from karstic dolines. The more relevant ones are their slope and the ratio diameter vs. depth. At the opposite of the pockmark structures observed on the seafloor for which exclusion zones have been described, the H2 emitting structures may intersect and they often growth by coalescence. These H2 emitting structures are always observed, up to now, above Archean or Neoproterozoic cratons; it suggests that anoxia at the time the sedimentation and iron content play a key role in the H2 sourcing. Full article
Show Figures

Figure 1

18 pages, 5183 KiB  
Article
A Kinematic Collision Box Algorithm Applied for the Anti-Collision System of Offshore Drilling Vessels
by Duy Thanh Nguyen, Kwang Hyo Jung, Ki-Youn Kwon, Namkug Ku and Jaeyong Lee
J. Mar. Sci. Eng. 2020, 8(6), 420; https://doi.org/10.3390/jmse8060420 - 9 Jun 2020
Cited by 2 | Viewed by 3771
Abstract
With the advances in technology and the automation of drilling platforms, the Anti-Collision System (ACS) has appeared as an affordable technology, which is intended to keep equipment on the drilling floor working harmoniously and to prevent the potential hazards associated with accidents. However, [...] Read more.
With the advances in technology and the automation of drilling platforms, the Anti-Collision System (ACS) has appeared as an affordable technology, which is intended to keep equipment on the drilling floor working harmoniously and to prevent the potential hazards associated with accidents. However, the specialty of the machinery on the drilling floor requires a distinguished structure for the ACS and a reliable collision-avoidance algorithm, which is not similar to any algorithm in other applications, such as automobiles and robotics. The aim of this paper is to provide a comprehension of the configuration of an ACS in an Integrated Drilling System and to develop a practical anti-collision algorithm that can be applied to the machine arrangement for an offshore drilling operation. By analyzing the motions and using kinematic parameters, such as the speed and deceleration information of drilling equipment, a kinematic collision box algorithm is developed to eliminate the limitation of conventional algorithms. While the conventional collision-avoidance algorithm uses a collision box with fixed size, the kinematic collision box algorithm uses a collision box with a flexible scale that can be correspond to the velocity and deceleration rate of the equipment. Several operating scenarios are simulated by a visual model of ACS to authenticate the functionality of the proposed algorithm. The operation of the top drive is an outstanding scenario. Only 2.25 s are required to stop the top drive from its maximum velocity, and a conventional algorithm uses this number to create a fixed bounding box. Also, the kinematic collision box algorithm uses the real-time data of velocity and acceleration to adjust the scale of the bounding box when the speed of the top drive increases from 0 to its maximum value. The simulation result illustrates the reliability and advances of the kinematic collision box algorithm in performing the collision-avoidance function in ACS compared to the conventional algorithm. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 1375 KiB  
Article
Pneumoproteins in Offshore Drill Floor Workers
by Niels E. Kirkhus, Bente Ulvestad, Lars Barregard, Øivind Skare, Raymond Olsen, Yngvar Thomassen and Dag G. Ellingsen
Int. J. Environ. Res. Public Health 2019, 16(3), 300; https://doi.org/10.3390/ijerph16030300 - 23 Jan 2019
Cited by 7 | Viewed by 2930
Abstract
The aim was to assess pneumoproteins and a certain biomarker of systemic inflammation in drill floor workers exposed to airborne contaminants generated during drilling offshore, taking into consideration serum biomarkers of smoking, such as nicotine (S-Nico) and cotinine. Blood samples of club cell [...] Read more.
The aim was to assess pneumoproteins and a certain biomarker of systemic inflammation in drill floor workers exposed to airborne contaminants generated during drilling offshore, taking into consideration serum biomarkers of smoking, such as nicotine (S-Nico) and cotinine. Blood samples of club cell protein 16 (CC-16), surfactant protein D (SP-D) and C-reactive protein (CRP) were collected before and after a 14-day work period from 65 drill floor workers and 65 referents. Air samples of oil mist, drilling mud components and elemental carbon were collected in person. The drill floor workers were exposed to a median air concentration of 0.18 mg/m3 of oil mist and 0.14 mg/m3 of airborne mud particles. There were no differences in the concentrations of CC-16 and SP-D across the 14-day work period and no difference between drill floor workers and referents at baseline after adjusting for differences in sampling time and smoking. CRP decreased across the work period. There was a strong association between the CC-16 concentrations and the time of sampling. Current smokers with S-Nico > detection limit (DL) had a statistically significantly lower CC-16 concentration, while smokers with S-Nico < DL had CC-16 concentrations similar to that of the non-smokers. Fourteen days of work offshore had no effect on serum pneumoprotein and CRP concentrations. However, the time of blood sampling was observed to have a strong effect on the measured concentrations of CC-16. The effect of current smoking on the CC-16 concentrations appears to be dependent on the S-Nico concentrations. Full article
(This article belongs to the Special Issue Occupational Epidemiology)
Show Figures

Figure 1

Back to TopTop