Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = offender activity space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1625 KiB  
Article
Explaining Theft Using Offenders’ Activity Space Inferred from Residents’ Mobile Phone Data
by Lin Liu, Chenchen Li, Luzi Xiao and Guangwen Song
ISPRS Int. J. Geo-Inf. 2024, 13(1), 8; https://doi.org/10.3390/ijgi13010008 - 26 Dec 2023
Cited by 1 | Viewed by 2342
Abstract
Both an offender’s home area and their daily activity area can impact the spatial distribution of crime. However, existing studies are generally limited to the influence of the offender’s home area and its immediate surrounding areas, while ignoring other activity spaces. Recent studies [...] Read more.
Both an offender’s home area and their daily activity area can impact the spatial distribution of crime. However, existing studies are generally limited to the influence of the offender’s home area and its immediate surrounding areas, while ignoring other activity spaces. Recent studies have reported that the routine activities of an offender are similar to those of the residents living in the same vicinity. Based on this finding, our study proposed a flow-based method to measure how offenders are distributed in space according to the spatial mobility of the residents. The study area consists of 2643 communities in ZG City in southeast China; resident flows between every two communities were calculated based on mobile phone data. Offenders’ activity locations were inferred from the mobility flows of residents living in the same community. The estimated count of offenders in each community included both the offenders living there and offenders visiting there. Negative binomial regression models were constructed to test the explanatory power of this estimated offender count. Results showed that the flow-based offender count outperformed the home-based offender count. It also outperformed a spatial-lagged count that considers offenders from the immediate neighboring communities. This approach improved the estimation of the spatial distribution of offenders, which is helpful for crime analysis and police practice. Full article
Show Figures

Figure 1

20 pages, 4094 KiB  
Article
Towards Safe Cyber Practices: Developing a Proactive Cyber-Threat Intelligence System for Dark Web Forum Content by Identifying Cybercrimes
by Kanti Singh Sangher, Archana Singh, Hari Mohan Pandey and Vivek Kumar
Information 2023, 14(6), 349; https://doi.org/10.3390/info14060349 - 18 Jun 2023
Cited by 6 | Viewed by 6373
Abstract
The untraceable part of the Deep Web, also known as the Dark Web, is one of the most used “secretive spaces” to execute all sorts of illegal and criminal activities by terrorists, cybercriminals, spies, and offenders. Identifying actions, products, and offenders on the [...] Read more.
The untraceable part of the Deep Web, also known as the Dark Web, is one of the most used “secretive spaces” to execute all sorts of illegal and criminal activities by terrorists, cybercriminals, spies, and offenders. Identifying actions, products, and offenders on the Dark Web is challenging due to its size, intractability, and anonymity. Therefore, it is crucial to intelligently enforce tools and techniques capable of identifying the activities of the Dark Web to assist law enforcement agencies as a support system. Therefore, this study proposes four deep learning architectures (RNN, CNN, LSTM, and Transformer)-based classification models using the pre-trained word embedding representations to identify illicit activities related to cybercrimes on Dark Web forums. We used the Agora dataset derived from the DarkNet market archive, which lists 109 activities by category. The listings in the dataset are vaguely described, and several data points are untagged, which rules out the automatic labeling of category items as target classes. Hence, to overcome this constraint, we applied a meticulously designed human annotation scheme to annotate the data, taking into account all the attributes to infer the context. In this research, we conducted comprehensive evaluations to assess the performance of our proposed approach. Our proposed BERT-based classification model achieved an accuracy score of 96%. Given the unbalancedness of the experimental data, our results indicate the advantage of our tailored data preprocessing strategies and validate our annotation scheme. Thus, in real-world scenarios, our work can be used to analyze Dark Web forums and identify cybercrimes by law enforcement agencies and can pave the path to develop sophisticated systems as per the requirements. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

14 pages, 1454 KiB  
Article
Influence of Varied Ambient Population Distribution on Spatial Pattern of Theft from the Person: The Perspective from Activity Space
by Guangwen Song, Chunxia Zhang, Luzi Xiao, Zhuoting Wang, Jianguo Chen and Xu Zhang
ISPRS Int. J. Geo-Inf. 2022, 11(12), 615; https://doi.org/10.3390/ijgi11120615 - 8 Dec 2022
Cited by 4 | Viewed by 2257
Abstract
The ambient population has been regarded as an important indicator for analyzing or predicting thefts. However, the literature has taken it as a homogenous group and seldom explored the varied impacts of different kinds of ambient populations on thefts. To fill this gap, [...] Read more.
The ambient population has been regarded as an important indicator for analyzing or predicting thefts. However, the literature has taken it as a homogenous group and seldom explored the varied impacts of different kinds of ambient populations on thefts. To fill this gap, supported by mobile phone trajectory data, this research investigated the relationship between ambient populations of different social groups and theft in a major city in China. With the control variables of motivated offenders and guardianship, spatial-lag negative binominal models were built to explore the effects of the ambient populations of different social groups on the distribution of theft. The results found that the influences of ambient populations of different social groups on the spatial distribution of theft are different. Accounting for the difference in the “risk–benefit” characteristics among different activity groups to the offenders, individuals from the migrant population are the most likely to be potential victims, followed by suburban and middle-income groups, while college, affluent, and affordable housing populations are the least likely. The local elderly population had no significant impact. This research has further enriched the studies of time geography and deepened routine activity theory. It suggests that the focus of crime prevention and control strategies developed by police departments should shift from the residential space to the activity space. Full article
Show Figures

Figure 1

24 pages, 5001 KiB  
Article
Understanding the Geography of Rape through the Integration of Data: Case Study of a Prolific, Mobile Serial Stranger Rapist Identified through Rape Kits
by Rachel E. Lovell, Danielle Sabo and Rachel Dissell
Int. J. Environ. Res. Public Health 2022, 19(11), 6810; https://doi.org/10.3390/ijerph19116810 - 2 Jun 2022
Cited by 5 | Viewed by 4525
Abstract
Environmental criminological research on rape series is an understudied field due largely to deficiencies in official and publicly available data. Additionally, little is known about the spatial patterns of rapists with a large number of stranger rapes. With a unique integration and application [...] Read more.
Environmental criminological research on rape series is an understudied field due largely to deficiencies in official and publicly available data. Additionally, little is known about the spatial patterns of rapists with a large number of stranger rapes. With a unique integration and application of spatial, temporal, behavioral, forensic, investigative, and personal history data, we explore the geography of rape of a prolific, mobile serial stranger rapist identified through initiatives to address thousands of previously untested rape kits in two U.S. urban, neighboring jurisdictions. Rape kit data provide the opportunity for a more complete and comprehensive understanding of stranger rape series by linking crimes that likely never would have been linked if not for the DNA evidence. This study fills a knowledge gap by exploring the spatial offending patterns of extremely prolific serial stranger rapists. Through the lens of routine activities theory, we explore the motivated offender, the lack of capable guardianship (e.g., built environment), and the targeted victims. The findings have important implications for gaining practical and useful insight into rapists’ use of space and behavioral decision-making processes, effective public health interventions and prevention approaches, and urban planning strategies in communities subjected to repeat targeting by violent offenders. Full article
Show Figures

Figure 1

21 pages, 4047 KiB  
Article
A National Examination of the Spatial Extent and Similarity of Offenders’ Activity Spaces Using Police Data
by Sophie Curtis-Ham, Wim Bernasco, Oleg N. Medvedev and Devon L. L. Polaschek
ISPRS Int. J. Geo-Inf. 2021, 10(2), 47; https://doi.org/10.3390/ijgi10020047 - 23 Jan 2021
Cited by 15 | Viewed by 5641
Abstract
It is well established that offenders’ routine activity locations (nodes) shape their crime locations, but research examining the geography of offenders’ routine activity spaces has to date largely been limited to a few core nodes such as homes and prior offense locations, and [...] Read more.
It is well established that offenders’ routine activity locations (nodes) shape their crime locations, but research examining the geography of offenders’ routine activity spaces has to date largely been limited to a few core nodes such as homes and prior offense locations, and to small study areas. This paper explores the utility of police data to provide novel insights into the spatial extent of, and overlap between, individual offenders’ activity spaces. It includes a wider set of activity nodes (including relatives’ homes, schools, and non-crime incidents) and broadens the geographical scale to a national level, by comparison to previous studies. Using a police dataset including n = 60,229 burglary, robbery, and extra-familial sex offenders in New Zealand, a wide range of activity nodes were present for most burglary and robbery offenders, but fewer for sex offenders, reflecting sparser histories of police contact. In a novel test of the criminal profiling assumptions of homology and differentiation in a spatial context, we find that those who offend in nearby locations tend to share more activity space than those who offend further apart. However, in finding many offenders’ activity spaces span wide geographic distances, we highlight challenges for crime location choice research and geographic profiling practice. Full article
(This article belongs to the Special Issue Geographic Crime Analysis)
Show Figures

Figure 1

18 pages, 2552 KiB  
Article
The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach
by Lu Wang, Gabby Lee and Ian Williams
ISPRS Int. J. Geo-Inf. 2019, 8(1), 51; https://doi.org/10.3390/ijgi8010051 - 21 Jan 2019
Cited by 34 | Viewed by 21798
Abstract
Criminal activities are often unevenly distributed over space. The literature shows that the occurrence of crime is frequently concentrated in particular neighbourhoods and is related to a variety of socioeconomic and crime opportunity factors. This study explores the broad patterning of property and [...] Read more.
Criminal activities are often unevenly distributed over space. The literature shows that the occurrence of crime is frequently concentrated in particular neighbourhoods and is related to a variety of socioeconomic and crime opportunity factors. This study explores the broad patterning of property and violent crime among different socio-economic stratums and across space by examining the neighbourhood socioeconomic conditions and individual characteristics of offenders associated with crime in the city of Toronto, which consists of 140 neighbourhoods. Despite being the largest urban centre in Canada, with a fast-growing population, Toronto is under-studied in crime analysis from a spatial perspective. In this study, both property and violent crime data sets from the years 2014 to 2016 and census-based Ontario-Marginalisation index are analysed using spatial and quantitative methods. Spatial techniques such as Local Moran’s I are applied to analyse the spatial distribution of criminal activity while accounting for spatial autocorrelation. Distance-to-crime is measured to explore the spatial behaviour of criminal activity. Ordinary Least Squares (OLS) linear regression is conducted to explore the ways in which individual and neighbourhood demographic characteristics relate to crime rates at the neighbourhood level. Geographically Weighted Regression (GWR) is used to further our understanding of the spatially varying relationships between crime and the independent variables included in the OLS model. Property and violent crime across the three years of the study show a similar distribution of significant crime hot spots in the core, northwest, and east end of the city. The OLS model indicates offender-related demographics (i.e., age, marital status) to be a significant predictor of both types of crime, but in different ways. Neighbourhood contextual variables are measured by the four dimensions of the Ontario-Marginalisation Index. They are significantly associated with violent and property crime in different ways. The GWR is a more suitable model to explain the variations in observed property crime rates across different neighbourhoods. It also identifies spatial non-stationarity in relationships. The study provides implications for crime prevention and security through an enhanced understanding of crime patterns and factors. It points to the need for safe neighbourhoods, to be built not only by the law enforcement sector but by a wide range of social and economic sectors and services. Full article
(This article belongs to the Special Issue GIS for Safety & Security Management)
Show Figures

Figure 1

Back to TopTop