Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = numerical wave flume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3783 KiB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 176
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

24 pages, 2840 KiB  
Article
Generation and Evolution of Cnoidal Waves in a Two-Dimensional Numerical Viscous Wave Flume
by Chih-Ming Dong, Ching-Jer Huang and Hui-Ching Huang
J. Mar. Sci. Eng. 2025, 13(6), 1102; https://doi.org/10.3390/jmse13061102 - 30 May 2025
Viewed by 365
Abstract
The generation and propagation of water waves in a numerical wave flume with Ursell numbers (Ur) ranging from 0.67 to 43.81 were investigated using the wave generation theory of Goring and Raichlen and a two-dimensional numerical viscous wave flume model. The [...] Read more.
The generation and propagation of water waves in a numerical wave flume with Ursell numbers (Ur) ranging from 0.67 to 43.81 were investigated using the wave generation theory of Goring and Raichlen and a two-dimensional numerical viscous wave flume model. The unsteady Navier–Stokes equations, along with nonlinear free surface boundary conditions and upstream boundary conditions at the wavemaker, were solved to build the numerical wave flume. The generated waves included small-amplitude, finite-amplitude, cnoidal, and solitary waves. For computational efficiency, the Jacobi elliptic function representing the surface elevation of a cnoidal wave was expressed as a Fourier series expansion. The accuracy of the generated waveforms and associated flow fields was validated through comparison with theoretical solutions. For Ur<26.32, small-amplitude waves generated using Goring and Raichlen’s wave generation theory matched those obtained from linear wave theory, while finite-amplitude waves matched those obtained using Madsen’s wave generation theory. For Ur>26.32, nonlinear wave generated using Goring and Raichlen’s theory remained permanent, whereas that generated using Madsen’s theory did not. The evolution of a cnoidal wave train with Ur=43.81 was examined, and it was found that, after an extended propagation period, the leading waves in the wave train evolved into a series of solitary waves, with the tallest wave positioned at the front. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 6958 KiB  
Article
Effect of Combined Wave and Current Loading on the Hydrodynamic Characteristics of Double-Pile Structures in Offshore Wind Turbine Foundations
by Yongqing Lai, Li Cai, Xinyun Wu, Bin Wang, Yiyang Hu, Yuwei Liang, Haisheng Zhao and Wei Shi
Energies 2025, 18(10), 2573; https://doi.org/10.3390/en18102573 - 15 May 2025
Viewed by 417
Abstract
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles [...] Read more.
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles affected by combined wave and current loadings are seldom revealed. In this study, a generation module for wave–current combined loading is developed in waves2Foam by considering the wave theory coupled current effect. Subsequently, a numerical flume model of the double-pile structure is established in OpenFOAM based on computational fluid dynamics (CFD) and SST k-ω turbulence theory, and the hydrodynamic characteristics of the double-pile structure are investigated. It can be found that, under the combined wave–current loading, the maximum wave run-up at the leeward side of the upstream monopile is significantly reduced by about 24% on average compared with that of the individual monopile when the spacing is 1.25 and 1.75 times the wave length. At the free water surface height, the maximum discrepancy between the maximum surface pressure on the downstream monopile and the corresponding result of the individual monopile is significantly reduced from 37% to 19%. Compared to the case applying the wave loading condition, the wave–current loading reduces the influence of spacing on the wave run-up along the downstream monopile surface, the maximum surface pressure at specific positions on both upstream and downstream monopile, and the overall maximum horizontal force acting on the double-pile structure. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

23 pages, 3517 KiB  
Article
The Optimal Design of an Inclined Porous Plate Wave Absorber Using an Artificial Neural Network Model
by Senthil Kumar Natarajan, Seokkyu Cho and Il-Hyoung Cho
Appl. Sci. 2025, 15(9), 4895; https://doi.org/10.3390/app15094895 - 28 Apr 2025
Viewed by 464
Abstract
This study seeks to optimize the shape of a wave absorber with an inclined porous plate using an artificial neural network (ANN) model to improve the operating efficiency and experimental accuracy of a square wave basin. As our numerical tool, we employed the [...] Read more.
This study seeks to optimize the shape of a wave absorber with an inclined porous plate using an artificial neural network (ANN) model to improve the operating efficiency and experimental accuracy of a square wave basin. As our numerical tool, we employed the dual boundary element method (DBEM) to avoid the rank deficiency problem occurring at the degenerate plate boundary with zero thickness. A quadratic velocity model incorporating a CFD-based drag coefficient was employed to account for energy dissipation across the porous plate. The developed DBEM tool was validated through comparisons with self-conducted experiments in a two-dimensional wave flume. The input features such as the inclined angle and plate length affect the performance of the wave absorber. These features have been optimized to minimize the averaged reflection coefficient and the installation space (spatial footprint) with the application of a trained ANN model. The dataset used for training the ANN model was created using the DBEM model. The trained model was subsequently utilized to predict the averaged reflection coefficient using a larger dataset, aiding in the determination of the optimal wave absorber design. In the optimization process of minimizing both reflected waves and spatial footprint, the weighting factors are assigned according to their relative importance to each other, using the weighted sum model (WSM) within the multi-criteria decision-making framework. It was found that the optimal design parameters of the non-dimensional plate length (l/h) and inclined angle (θ) are 1.46 and 5.34° when performing with a weighting factor ratio (80%: 20%) between reflection and spatial footprint. Full article
Show Figures

Figure 1

35 pages, 15716 KiB  
Article
Experimental Study of the Hydrodynamic Forces of Pontoon Raft Aquaculture Facilities Around a Wind Farm Monopile Under Wave Conditions
by Deming Chen, Mingchen Lin, Jinxin Zhou, Yanli Tang, Fenfang Zhao, Xinxin Wang, Mengjie Yu, Qiao Li and Daisuke Kitazawa
J. Mar. Sci. Eng. 2025, 13(4), 809; https://doi.org/10.3390/jmse13040809 - 18 Apr 2025
Viewed by 481
Abstract
The integrated development of offshore wind power and marine aquaculture represents a promising approach to the sustainable utilization of ocean resources. The present study investigated the hydrodynamic response of an innovative combination of a wind farm monopile and pontoon raft aquaculture facilities (PRAFs). [...] Read more.
The integrated development of offshore wind power and marine aquaculture represents a promising approach to the sustainable utilization of ocean resources. The present study investigated the hydrodynamic response of an innovative combination of a wind farm monopile and pontoon raft aquaculture facilities (PRAFs). Physical water tank experiments were conducted on PRAFs deployed around a wind farm monopile using the following configurations: single- and three-row arrangements of PRAFs with and without a monopile. The interaction between the aquaculture structure and the wind farm monopile was examined, with a particular focus on the mooring line tensions and bridle line tensions under different wave conditions. Utilizing the wind farm monopile foundation as an anchor, the mooring line tension was reduced significantly by 16–66% in the single-row PRAF. The multi-row PRAF arrangement experienced lower mooring line tension in comparison with the single-row PRAF arrangement, with the highest reduction of 73%. However, for the bridle line tension, the upstream component was enhanced, while the downstream one was weakened with a monopile, and they both decreased in the multi-row arrangement. Finally, we developed numerical models based on flume tank tests that examined the interactions between the monopile and PRAFs, including configurations of a single monopile, along with single- and three-row arrangements of PRAFs. The numerical simulation results confirmed that the monopile had a dampening effect on the wave propagation of 5% to 20%, and the impact of the pontoons on the monopile was negligible, implying that the integration of aquaculture facilities around wind farm infrastructure may not significantly alter the hydrodynamic loads experienced by the monopile. Full article
Show Figures

Figure 1

20 pages, 7926 KiB  
Article
Numerical Simulation Study on Hydrodynamic Characteristics of Offshore Floating Photovoltaics
by Shuting Sui, Lu Cao, Yun Gao, Zhongyan Huo and Qi Chen
J. Mar. Sci. Eng. 2025, 13(1), 142; https://doi.org/10.3390/jmse13010142 - 15 Jan 2025
Viewed by 980
Abstract
With the development of renewable energy and the utilization of marine resources, large-scale offshore floating photovoltaics have gradually attracted widespread attention. In order to develop offshore floating photovoltaics and promote sustainable development, it has become necessary to explore the hydrodynamic characteristics of floating [...] Read more.
With the development of renewable energy and the utilization of marine resources, large-scale offshore floating photovoltaics have gradually attracted widespread attention. In order to develop offshore floating photovoltaics and promote sustainable development, it has become necessary to explore the hydrodynamic characteristics of floating photovoltaic units and floating arrays. In this work, based on the viscous flow theory, the Computational Fluid Dynamics (CFD) and the discrete element method (DEM) methods are used to analyze the hydrodynamics of the floating body unit of offshore floating photovoltaics. The influencing factors include mooring length, mooring radius, and floating unit length. In addition, the hydrodynamic performance of the floating body unit and the floating body array under different wave heights and periods is also discussed to explore the influence of environmental loads on the floating body unit and the floating body array. The results indicate that the mooring tension exhibits an opposite trend with the surge and heave motions when the mooring line length and radius are varied. The motion is found to be more pronounced when the floating body unit length is 0.4 times the wavelength. The heave motion of the floating body unit exhibits a strong linear relationship with wave height, increasing by 0.01 m for every 0.015 m increase in wave height. The motion of the floating body units on both sides connected to the mooring lines decreases as the array length increases. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 6455 KiB  
Article
Numerical Study on the Wave Attenuation Performance of a Novel Partial T Special-Type Floating Breakwater
by Xuanqi Ruan, Hongliang Qian, Jingxuan Dai, Feng Fan and Shuang Niu
J. Mar. Sci. Eng. 2024, 12(12), 2269; https://doi.org/10.3390/jmse12122269 - 10 Dec 2024
Cited by 1 | Viewed by 1106
Abstract
Floating breakwaters (FBs) play an important role in protecting coastlines, marine structures, and ports due to their simple construction, convenient movement, cost-effectiveness, and environmental friendliness. However, the traditional box-type FBs are flawed due to their requiring large sizes for wave attenuation and their [...] Read more.
Floating breakwaters (FBs) play an important role in protecting coastlines, marine structures, and ports due to their simple construction, convenient movement, cost-effectiveness, and environmental friendliness. However, the traditional box-type FBs are flawed due to their requiring large sizes for wave attenuation and their overly high level of wave reflection. In this paper, a novel partial T special-type FB with wave attenuation on the surface and flow blocking below the water has been presented. First, the User-Defined Function (UDF) feature in ANSYS Fluent was employed to compile the six degrees of freedom (6-DOF) motion model. A two-dimensional viscous numerical wave flume was developed using the velocity boundary wave-generation method and damping dissipation wave-absorption method, with fully coupled models of the FBs developed. A VOF multiphase flow model and a RANS turbulence model were employed to capture the free flow of gas–liquid two-phase flow. Then, the performance of wave attenuation of the new FB was compared with that of the traditional box-type FB of the same specifications. The simulation results showed that the transmission coefficient of the new FB is significantly lower than that of the box-type FB, and the dissipation coefficient is notably higher, demonstrating excellent performance of wave attenuation, particularly for long-period waves. As wave height increases, the novel FB benefits from its wave attenuation mechanism, with a lower reflection coefficient compared to the box-type FB. Finally, through parametric analysis, some design recommendations of the novel FB suitable for practical engineering applications in deep-sea aquaculture are presented. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 3863 KiB  
Article
One-Dimensional Numerical Cascade Model of Runoff and Soil Loss on Convergent and Divergent Plane Soil Surfaces: Laboratory Assessment and Numerical Simulations
by Babar Mujtaba, João L. M. P. de Lima and M. Isabel P. de Lima
Water 2024, 16(20), 2955; https://doi.org/10.3390/w16202955 - 17 Oct 2024
Viewed by 995
Abstract
A one-dimensional numerical overland flow model based on the cascade plane theory was developed to estimate rainfall-induced runoff and soil erosion on converging and diverging plane surfaces. The model includes three components: (i) soil infiltration using Horton’s infiltration equation, (ii) overland flow using [...] Read more.
A one-dimensional numerical overland flow model based on the cascade plane theory was developed to estimate rainfall-induced runoff and soil erosion on converging and diverging plane surfaces. The model includes three components: (i) soil infiltration using Horton’s infiltration equation, (ii) overland flow using the kinematic wave approximation of the one-dimensional Saint-Venant shallow water equations for a cascade of planes, and (iii) soil erosion based on the sediment transport continuity equation. The model’s performance was evaluated by comparing numerical results with laboratory data from experiments using a rainfall simulator and a soil flume. Four independent experiments were conducted on converging and diverging surfaces under varying slope and rainfall conditions. Overall, the numerically simulated hydrographs and sediment graphs closely matched the laboratory results, showing the efficiency of the model for the tested controlled laboratory conditions. The model was then used to numerically explore the impact of different plane soil surface geometries on runoff and soil loss. Seven geometries were studied: one rectangular, three diverging, and three converging. A constant soil surface area, the rainfall intensity, and the slope gradient were maintained in all simulations. Results showed that increasing convergence angles led to a higher peak and total soil loss, while decreasing divergence angles reduced them. Full article
Show Figures

Figure 1

20 pages, 5502 KiB  
Article
Numerical and Experimental Power Output Estimation for a Small-Scale Hinged Wave Energy Converter
by Giovanni Martins, Paulo Rosa-Santos and Gianmaria Giannini
Sustainability 2024, 16(19), 8671; https://doi.org/10.3390/su16198671 - 8 Oct 2024
Cited by 2 | Viewed by 1356
Abstract
Wave energy converters (WECs) integrated into breakwaters present a promising solution for combining coastal protection with renewable energy generation, addressing both energy demands and environmental concerns. Additionally, this integration offers cost-sharing opportunities, making the overall investment more economically viable. This study explores the [...] Read more.
Wave energy converters (WECs) integrated into breakwaters present a promising solution for combining coastal protection with renewable energy generation, addressing both energy demands and environmental concerns. Additionally, this integration offers cost-sharing opportunities, making the overall investment more economically viable. This study explores the potential of a hinged point-absorber WEC, specifically designed as a floating hinged half-sphere, by assessing the device’s power output and comparing two different breakwater configurations. To evaluate the device’s performance, a comprehensive numerical and experimental approach was adopted. Numerical simulations were carried out using a radiation-diffraction model, a time domain tool for analyzing wave–structure interactions. These simulations predicted average power outputs of 25 kW for sloped breakwaters and 18 kW for vertical breakwaters located at two strategic sites: the Port of Leixões and the mouth of the Douro River in Portugal. To validate these predictions, a 1:14 scale model of the WEC was constructed and subjected to testing in a wave–current flume, replicating different sea-state conditions. The experimental results closely aligned with the numerical simulations, demonstrating a good match in terms of relative error and relative amplitude operator (RAO). This alignment confirms the reliability of the predictive model. These findings support the potential of integrating WECs into breakwaters, contributing to port energy self-sufficiency and decarbonization. Full article
Show Figures

Figure 1

24 pages, 14338 KiB  
Article
Experimental Study of the Random Wave-Induced Hydrodynamics and Soil Response in a Porous Seabed Around Double Piles
by Mingqing Wang, Wenqi Si, Yaru Gao, Lin Cui, Dong-Sheng Jeng, Ke Sun, Bing Chen and Hongyi Zhao
J. Mar. Sci. Eng. 2024, 12(10), 1715; https://doi.org/10.3390/jmse12101715 - 29 Sep 2024
Cited by 2 | Viewed by 1313
Abstract
The evaluation of the wave-induced pore pressures around the offshore piles has attracted great attentions among coastal engineers, because they have been commonly used as foundations of numerous marine infrastructures. This paper presents comparative studies of the random wave-induced transient seabed response around [...] Read more.
The evaluation of the wave-induced pore pressures around the offshore piles has attracted great attentions among coastal engineers, because they have been commonly used as foundations of numerous marine infrastructures. This paper presents comparative studies of the random wave-induced transient seabed response around single and double piles in a sandy seabed through a series of wave flume experiments. The influences of relative spacing ratios, wave incidence angles, and front pile diameters under different random wave parameters on oscillatory pore pressures in the vicinity of double piles are examined. In addition, variations in wave profiles and dynamic wave pressures surrounding single and double piles are quantitatively analyzed. Based on the experimental results, the following conclusions can be drawn: (1) under the influence of random waves, the wave profiles around the double piles exhibit obvious irregularity and nonlinearity; (2) the shielding effect existing in the tandem piles results in lower dynamic wave pressures around the rear pile compared to the front pile; (3) the pore pressures on the front surface of the double piles decrease with increasing soil depth, with a decreasing attenuation rate at each layer; (4) when the relative spacing ratio G/D2=3, the group-pile effect weakens, leading to an increase in the pore pressures around the rear pile, approaching the results of a single pile under conditions of lower significant wave heights or periods; (5) the intense disturbance effect caused by large wave incidence angles exacerbates the pore pressure response around the double piles; (6) when the diameter of the front pile in the tandem piles increases, it enhances the shielding effect, thus suppressing the seabed response around the rear pile. In contrast, it causes an increase in the wave surface around the double piles, exacerbating the pore pressure response in the seabed. The latter effect becomes more pronounced when the significant wave height is larger. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 2667 KiB  
Article
Development of a Wind–Wave Coherence Function Based on Numerical Studies
by Chengxun Wei, Shenghui Li and Haiying Mao
Water 2024, 16(17), 2552; https://doi.org/10.3390/w16172552 - 9 Sep 2024
Viewed by 884
Abstract
The synchronization and intensity of fluctuating wind speeds and wave surfaces in wind–wave joint propagation processes are affected by the coherence of the marine ambient factors of fluctuating wind and random waves. This coherence further affects the precise calculations of wind–wave joint actions [...] Read more.
The synchronization and intensity of fluctuating wind speeds and wave surfaces in wind–wave joint propagation processes are affected by the coherence of the marine ambient factors of fluctuating wind and random waves. This coherence further affects the precise calculations of wind–wave joint actions on marine structures. Therefore, a wind–wave joint propagation numerical flume was established based on the numerical simulation of random waves and fluctuating wind fields. A series of numerical simulations of wind–wave joint propagations were carried out. Based on the numerical results, the influences and influence laws of factors such as wind speed position height, significant wave height and wave spectrum peak frequency on the wind–wave coherence values were studied. According to the influence characteristics of these factors, a function of wind–wave coherence values for random wind–wave joint propagation was calculated. The coherence function takes frequency as the variable, while parameters include significant wave height, wind speed position height and wave spectrum peak frequency. Through a series of numerical simulation results, data fitting was used to calculate the parameter coefficients of the coherence function. The established random wind–wave coherence function can be described using the wind–wave joint fields of marine structures and the computational analyses of structural wind–wave joint actions. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

24 pages, 13600 KiB  
Article
Numerical Investigation of the Hydrodynamic Characteristics of a Novel Bucket-Shaped Permeable Breakwater Using OpenFOAM
by Anqi Yuan, Dongxu Wang, Yuejiao Jiang, Yifeng Wang and Jinsong Gui
J. Mar. Sci. Eng. 2024, 12(9), 1574; https://doi.org/10.3390/jmse12091574 - 6 Sep 2024
Viewed by 1143
Abstract
To align with contemporary concepts of low-carbon and environmental protection, a new type of bucket-shaped permeable breakwater, based on the prototype of the bucket-based breakwater in Xuwei Port Area, Lianyungang, Jiangsu Province, China, was proposed. A three-dimensional numerical wave flume was constructed using [...] Read more.
To align with contemporary concepts of low-carbon and environmental protection, a new type of bucket-shaped permeable breakwater, based on the prototype of the bucket-based breakwater in Xuwei Port Area, Lianyungang, Jiangsu Province, China, was proposed. A three-dimensional numerical wave flume was constructed using the OpenFOAM platform and DXFlow (an open-source computational fluid dynamics toolbox based on OpenFOAM). The effectiveness of this numerical wave flume was validated through temporal and spatial verification, wave generation validation, and model testing. The study investigated the effects of bucket porosity, opening shapes, number of openings, and the positioning of these openings on the wave-dissipating performance under regular wave conditions. It analyzed the force characteristics near the openings. The results showed that within the relative wavelength range of L/D between 6.7 and 12.7, relative wave height H/d between 0.175 and 0.275, changes in wavelength had a limited impact on the wave-dissipating performance of the bucket-shaped permeable breakwater. The wave-dissipating performance was primarily related to the porosity, with the optimal overall wave-dissipating performance occurring at a bucket porosity of 12%. The shape and number of openings had a minimal relationship with performance. Additionally, the connecting walls of this type of breakwater experienced the most significant wave impact, suggesting that these areas should be reinforced in practical engineering applications. Full article
Show Figures

Figure 1

22 pages, 7491 KiB  
Article
Computational Study of Overtopping Phenomenon over Cylindrical Structures Including Mitigation Structures
by Gustavo A. Esteban, Xabier Ezkurra, Iñigo Bidaguren, Iñigo Albaina and Urko Izquierdo
J. Mar. Sci. Eng. 2024, 12(8), 1441; https://doi.org/10.3390/jmse12081441 - 20 Aug 2024
Viewed by 1380
Abstract
Wave overtopping occurring in offshore wind renewable energy structures such as tension leg platforms (TLPs) or semi-submersible platforms is a phenomenon that is worth studying and preventing in order to extend the remaining useful life of the corresponding facilities. The behaviour of this [...] Read more.
Wave overtopping occurring in offshore wind renewable energy structures such as tension leg platforms (TLPs) or semi-submersible platforms is a phenomenon that is worth studying and preventing in order to extend the remaining useful life of the corresponding facilities. The behaviour of this phenomenon has been extensively reported for linear coastal defences like seawalls. However, no referenced study has treated the case of cylindrical structures typical of these applications to a similar extent. The aim of the present study is to define an empirical expression that portrays the relative overtopping rate over a vertical cylinder including a variety of bull-nose type mitigation structures to reduce the overtopping rate in the same fashion as for the linear structures characteristic of shoreline defences. Hydrodynamic interaction was studied by means of an experimentally validated numerical model applied to a non-impulsive regular wave regime and the results were compared with the case of a plain cylinder to evaluate the expected improvement in the overtopping performance. Four different types of parapets were added to the crest of the base cylinder, with different parapet height and horizontal extension, to see the influence of the geometry on the mitigation efficiency. Computational results confirmed the effectivity of the proposed solution in the overtopping reduction, though the singularity of each parapet geometry did not lead to an outstanding difference between the analysed options. Consequently, the resulting overtopping decrease in all the proposed geometries could be modelled by a unique specific Weibull-type function of the relative freeboard, which governed the phenomenon, showing a net reduction in comparison with the cylinder without the geometric modifications. In addition, the relationship between the reduced relative overtopping rate and the mean flow thickness over the vertical cylinder crest was studied as an alternative methodology to assess the potential damage caused by overtopping in real structures without complex volumetric measurements. The collection of computational results was fitted to a useful function, allowing for the definition of the overtopping discharge once the mean flow thickness was known. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 4079 KiB  
Article
Enhancing Wave Energy Converters: Dynamic Inertia Strategies for Efficiency Improvement
by Aleix Maria-Arenas, Aitor J. Garrido and Izaskun Garrido
J. Mar. Sci. Eng. 2024, 12(8), 1285; https://doi.org/10.3390/jmse12081285 - 31 Jul 2024
Cited by 1 | Viewed by 1954
Abstract
Wave energy conversion is a promising field of renewable energy, but it still faces several technological and economic challenges. One of these challenges is to improve the energy efficiency and adaptability of Wave Energy Converters to varying wave conditions. A technological approach to [...] Read more.
Wave energy conversion is a promising field of renewable energy, but it still faces several technological and economic challenges. One of these challenges is to improve the energy efficiency and adaptability of Wave Energy Converters to varying wave conditions. A technological approach to solve this efficiency challenge is the negative spring mechanisms illustrated in recent studies. This paper proposes and analyzes a novel negative spring technological concept that dynamically modifies the mass and inertia of a Wave Energy Converter by transferring seawater between its compartments. The added value of the presented technology relies on interoperability, ease of manufacturing and operating, and increased energy efficiency for heterogeneous sea states. The concept is presented in two analyzed alternatives: a passive one, which requires no electrical consumption and is purely based on the relative motion of the bodies, and an active one, which uses a controlled pump system to force the water transfer. The system is evaluated numerically using widely accepted simulation tools, such as WECSIM, and validated by physical testing in a wave flume using decay and regular test scenarios. Key findings include a relevant discussion about system limitations and a demonstrated increase in the extracted energy efficiency up to 12.7% while limiting the maximum power extraction for a singular wave frequency to 3.41%, indicating an increased adaptability to different wave frequencies because of the amplified range of near-resonance operation of the WEC up to 0.21 rad/s. Full article
(This article belongs to the Special Issue Energy Optimization of Ship and Maritime Structures)
Show Figures

Figure 1

22 pages, 12698 KiB  
Article
Non-Equilibrium Scour Evolution around an Emerged Structure Exposed to a Transient Wave
by Deniz Velioglu Sogut, Erdinc Sogut, Ali Farhadzadeh and Tian-Jian Hsu
J. Mar. Sci. Eng. 2024, 12(6), 946; https://doi.org/10.3390/jmse12060946 - 5 Jun 2024
Cited by 1 | Viewed by 1307
Abstract
The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave, by comparing numerical findings with experimental data. This study also investigates the impact of the structure’s positioning on [...] Read more.
The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave, by comparing numerical findings with experimental data. This study also investigates the impact of the structure’s positioning on bed evolution, analyzing configurations where the structure is either attached to the sidewall or positioned at the centerline of the wave flume. The first numerical method treats sediment particles as a distinct continuum phase, directly solving the continuity and momentum equations for both sediment and fluid phases. The second method estimates sediment transport using the quadratic law of bottom shear stress, yielding robust predictions of bed evolution through meticulous calibration and validation. The findings reveal that both methods underestimate vortex-induced near-bed vertical velocities. Deposits formed along vortex trajectories are overestimated by the first method, while the second method satisfactorily predicts the bed evolution beneath these paths. Scour holes caused by wave impingement tend to backfill as the flow intensity diminishes. The second method cannot sufficiently capture this backfilling, whereas the first method adequately reflects the phenomenon. Overall, this study highlights significant variations in the predictive capabilities of both methods in regard to the evolution of non-equilibrium scour at low Keulegan–Carpenter numbers. Full article
(This article belongs to the Special Issue Coastal Disaster Assessment and Response)
Show Figures

Figure 1

Back to TopTop