Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = nordamnacanthal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5137 KiB  
Article
Ultrastructural and Morphological Effects in T-Lymphoblastic Leukemia CEM-SS Cells Following Treatment with Nordamnacanthal and Damnacanthal from Roots of Morinda elliptica
by Saiful Yazan Latifah, Banulata Gopalsamy, Raha Abdul Rahim, Abdul Manaf Ali and Nordin Haji Lajis
Molecules 2022, 27(13), 4136; https://doi.org/10.3390/molecules27134136 - 28 Jun 2022
Cited by 4 | Viewed by 1872
Abstract
Background: Morinda elliptica (family Rubiaceae), locally known as ‘mengkudu kecil’, has been used by the Malays for medicinal purposes. Anthraquinones isolated from the roots of Morinda elliptica, namely nordamnacanthal and damnacanthal, have been widely reported to exhibit anticancer and antioxidant properties in [...] Read more.
Background: Morinda elliptica (family Rubiaceae), locally known as ‘mengkudu kecil’, has been used by the Malays for medicinal purposes. Anthraquinones isolated from the roots of Morinda elliptica, namely nordamnacanthal and damnacanthal, have been widely reported to exhibit anticancer and antioxidant properties in various cancer models in vitro and in vivo. Aim: This study analyzed the morphological and ultrastructural effects of damnacanthal and nordamnacanthal on T-lymphoblastic leukemia CEM-SS cells. Method: Light microscopy, Giemsa staining, Wright’s staining, scanning electron microscopy, and transmission electron microscopy were carried out to determine apoptosis, necrosis, and ultrastructural changes that occurred within the cells. Results: The outcomes showed that these compounds induced cell death by apoptosis and necrosis, specifically at higher doses of 10 and 30 μg/mL. Condensation and fragmentation of the nuclear chromatin, which further separated into small, membrane-bound vesicles known as apoptotic bodies, were observed in the nuclei and cytoplasm. The plasma membranes and cytoskeletons also showed marked morphological changes upon treatment with damnacanthal and nordamnacanthal, indicating apoptosis. Conclusion: Therefore, we report that damnacanthal and nordamnacanthal exhibit anticancer properties by inducing apoptosis and necrosis in CEM-SS cells, and they have potential as a drug for the treatment of T-lymphoblastic leukemia. Full article
Show Figures

Figure 1

20 pages, 7962 KiB  
Article
Anticancer Potential of Damnacanthal and Nordamnacanthal from Morinda elliptica Roots on T-lymphoblastic Leukemia Cells
by Saiful Yazan Latifah, Banulata Gopalsamy, Raha Abdul Rahim, Abdul Manaf Ali and Nordin Haji Lajis
Molecules 2021, 26(6), 1554; https://doi.org/10.3390/molecules26061554 - 12 Mar 2021
Cited by 16 | Viewed by 2710
Abstract
Background: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines. Methods: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out. Results: Nordamnacanthal and damnacanthal at IC [...] Read more.
Background: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines. Methods: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out. Results: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180–200 bp fragments that are visible as a “ladder” on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle. Conclusion: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia. Full article
Show Figures

Figure 1

26 pages, 3550 KiB  
Article
A Mass Spectrometry-Based Approach for Characterization of Red, Blue, and Purple Natural Dyes
by Katarzyna Lech and Emilia Fornal
Molecules 2020, 25(14), 3223; https://doi.org/10.3390/molecules25143223 - 15 Jul 2020
Cited by 38 | Viewed by 6041
Abstract
Effective analytical approaches for the identification of natural dyes in historical textiles are mainly based on high-performance liquid chromatography coupled with spectrophotometric detection and tandem mass spectrometric detection with electrospray ionization (HPLC-UV-Vis-ESI MS/MS). Due to the wide variety of dyes, the developed method [...] Read more.
Effective analytical approaches for the identification of natural dyes in historical textiles are mainly based on high-performance liquid chromatography coupled with spectrophotometric detection and tandem mass spectrometric detection with electrospray ionization (HPLC-UV-Vis-ESI MS/MS). Due to the wide variety of dyes, the developed method should include an adequate number of reference color compounds, but not all of them are commercially available. Thus, the present study was focused on extending of the universal analytical HPLC-UV-Vis-ESI MS/MS approach to commercially unavailable markers of red, purple, and blue dyes. In the present study, HPLC-UV-Vis-ESI MS/MS was used to characterize the colorants in ten natural dyes (American cochineal, brazilwood, indigo, kermes, lac dye, logwood, madder, orchil, Polish cochineal, and sandalwood) and, hence, to extend the analytical method for the identification of natural dyes used in historical objects to new compounds. Dye markers were identified mostly on the basis of triple quadrupole MS/MS spectra. In consequence, the HPLC-UV-Vis-ESI MS/MS method with dynamic multiple reaction monitoring (dMRM) was extended to the next 49 commercially unavailable colorants (anthraquinones and flavonoids) in negative ion mode and to 11 (indigoids and orceins) in positive ion mode. These include protosappanin B, protosappanin E, erythrolaccin, deoxyerythrolaccin, nordamnacanthal, lucidin, santalin A, santalin B, santarubin A, and many others. Moreover, high-resolution QToF MS data led to the establishment of the complex fragmentation pathways of α-, β-, and γ- aminoorceins, hydroxyorceins, and aminoorceinimines extracted from wool dyed with Roccella tinctoria DC. The developed approach has been tested in the identification of natural dyes used in 223 red, purple, and blue fibers from 15th- to 17th-century silk textiles. These European and Near Eastern textiles have been used in vestments from the collections of twenty Krakow churches. Full article
Show Figures

Figure 1

14 pages, 317 KiB  
Communication
Total Synthesis, Cytotoxic Effects of Damnacanthal, Nordamnacanthal and Related Anthraquinone Analogues
by Muhammad Nadeem Akhtar, Seema Zareen, Swee Keong Yeap, Wan Yong Ho, Kong Mun Lo, Aurangzeb Hasan and Noorjahan Banu Alitheen
Molecules 2013, 18(8), 10042-10055; https://doi.org/10.3390/molecules180810042 - 20 Aug 2013
Cited by 27 | Viewed by 12057
Abstract
Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± [...] Read more.
Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 mg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

9 pages, 222 KiB  
Article
Anthraquinones with Antiplasmodial Activity from the Roots of Rennellia elliptica Korth. (Rubiaceae)
by Che Puteh Osman, Nor Hadiani Ismail, Rohaya Ahmad, Norizan Ahmat, Khalijah Awang and Faridahanim Mohd Jaafar
Molecules 2010, 15(10), 7218-7226; https://doi.org/10.3390/molecules15107218 - 20 Oct 2010
Cited by 52 | Viewed by 11304
Abstract
Dichloromethane root extract of Rennellia elliptica Korth. showed strong inhibition of Plasmodium falciparum growth in vitro with an IC50 value of 4.04 µg/mL. A phytochemical study of the dichloromethane root extract has led to the isolation and characterization of a new anthraquinone, [...] Read more.
Dichloromethane root extract of Rennellia elliptica Korth. showed strong inhibition of Plasmodium falciparum growth in vitro with an IC50 value of 4.04 µg/mL. A phytochemical study of the dichloromethane root extract has led to the isolation and characterization of a new anthraquinone, 1,2-dimethoxy-6-methyl-9,10-anthraquinone (1), and ten known anthraquinones: 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (2), nordamnacanthal (3), 2-formyl-3-hydroxy-9,10-anthraquinone (4), damnacanthal (5), lucidin-ω-methyl ether (6), 3-hydroxy-2-methyl-9,10-anthraquinone (7), rubiadin (8), 3-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (9), rubiadin-1-methyl ether (10) and 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone (11). Structural elucidation of all compounds was accomplished by modern spectroscopic methods, notably 1D and 2D NMR, IR, UV and HREIMS. The new anthraquinone 1, 2-formyl-3-hydroxy-9,10-anthraquinone (4) and 3-hydroxy-2-methyl-9,10-anthraquinone (7) possess strong antiplasmodial activity, with IC50 values of 1.10, 0.63 and 0.34 µM, respectively. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop