Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = nonlinear chirp scaling (NLCS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 29247 KiB  
Article
An Improved NLCS Algorithm Based on Series Reversion and Elliptical Model Using Geosynchronous Spaceborne–Airborne UHF UWB Bistatic SAR for Oceanic Scene Imaging
by Xiao Hu, Hongtu Xie, Shiliang Yi, Lin Zhang and Zheng Lu
Remote Sens. 2024, 16(7), 1131; https://doi.org/10.3390/rs16071131 - 23 Mar 2024
Cited by 5 | Viewed by 1339
Abstract
Geosynchronous spaceborne–airborne (GEO-SA) ultra-high-frequency ultra-wideband bistatic synthetic aperture radar (UHF UWB BiSAR) provides high-precision images for marine and polar environments, which are pivotal in glacier monitoring and sea ice thickness measurement for polar ocean mapping and navigation. Contrasting with traditional high-frequency BiSAR, it [...] Read more.
Geosynchronous spaceborne–airborne (GEO-SA) ultra-high-frequency ultra-wideband bistatic synthetic aperture radar (UHF UWB BiSAR) provides high-precision images for marine and polar environments, which are pivotal in glacier monitoring and sea ice thickness measurement for polar ocean mapping and navigation. Contrasting with traditional high-frequency BiSAR, it faces unique challenges, such as the considerable spatial variability, significant range–azimuth coupling, and vast volumes of echo data, which impede high-resolution image reconstruction. This paper presents an improved bistatic nonlinear chirp scaling (NLCS) algorithm for imaging oceanic scenes with GEO-SA UHF UWB BiSAR. This methodology extends the two-dimensional (2-D) spectrum up to the sixth order via the method of series reversion (MSR) to meet accuracy demands and then employs an elliptical model to elucidate the alterations in the azimuth frequency modulation (FM) rate mismatch. Initially, the imaging geometry and signal model are introduced, and then a separation of bistatic slant ranges based on the configuration is proposed. In addition, during range processing, after eliminating linear range cell migration (RCM), the derivation process for the sixth-order 2-D spectrum is detailed and an improved filter is applied to correct the high-order RCM. Finally, during azimuth processing, the causes of the FM rate mismatch are analyzed, a cubic perturbation function derived from the elliptical model is used for FM rate equalization, and a unified sixth-order filter is applied to complete the azimuth compression. Experimental results with point targets and natural oceanic scenes validate the outstanding efficacy of the proposed NLCS algorithm, particularly in imaging quality enhancements for GEO-SA UHF UWB BiSAR. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

19 pages, 20906 KiB  
Article
A Modified Range Doppler Algorithm for High-Squint SAR Data Imaging
by Yanan Guo, Pengbo Wang, Zhirong Men, Jie Chen, Xinkai Zhou, Tao He and Lei Cui
Remote Sens. 2023, 15(17), 4200; https://doi.org/10.3390/rs15174200 - 26 Aug 2023
Cited by 4 | Viewed by 3299
Abstract
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods [...] Read more.
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods for high-squint airborne SAR. However, the high-squint SAR echoes have large Range Cell Migration (RCM), resulting in severe range–azimuth coupling and strong spatial variation. In this paper, a Modified Range Doppler Algorithm (MRDA) is proposed to cope with these effects introduced by the significant RCM in high-squint airborne SAR imaging. The bulk compensation preprocessing is first adopted to remove the considerable RCM and severe cross-coupling in a two-dimensional frequency domain. Then, Non-Linear Chirp Scaling (NLCS) in the range direction is utilized to equalize the range-variant chirp rate caused by the residual RCM and coupling and, therefore, the consistent range phase compensation can be fulfilled in range frequency domain. The modified correlation processing is executed to compensate the residual Doppler phase modulation, the residual RCM and the range-variant cubic phase modulation, which guarantees the characteristics of high efficiency and high precision. The simulations have demonstrated that the MRDA can focus the SAR echoes with large squint angles more effectively than the algorithms based on the Linear Range Walk Correction (LRWC) method. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

23 pages, 19153 KiB  
Article
A Modified NLCS Algorithm for High-Speed Bistatic Forward-Looking SAR Focusing with Spaceborne Illuminator
by Yuzhou Liu, Yachao Li, Xuan Song and Xuanqi Wang
Remote Sens. 2023, 15(6), 1699; https://doi.org/10.3390/rs15061699 - 21 Mar 2023
Cited by 2 | Viewed by 2027
Abstract
The coupling and spatial variation of range and azimuth parameters is the biggest challenge for bistatic forward-looking SAR (BFSAR) imaging. In contrast with the monostatic SAR and translational invariant bistatic SAR (TI-BSAR), the range cell migration (RCM), and Doppler parameters of high-speed bistatic [...] Read more.
The coupling and spatial variation of range and azimuth parameters is the biggest challenge for bistatic forward-looking SAR (BFSAR) imaging. In contrast with the monostatic SAR and translational invariant bistatic SAR (TI-BSAR), the range cell migration (RCM), and Doppler parameters of high-speed bistatic forward-looking SAR (HS-BFSAR) have two-dimensional spatial variation characteristics, which makes it difficult to obtain SAR images with satisfactory global focusing. Firstly, based on the configuration of the spaceborne illuminator and high-speed forward-looking receiving platform, the accurate range-Doppler domain expression of the echo signal is derived in this paper. Secondly, using this analytical expression, a range nonlinear chirp scaling (NLCS) is proposed to equalize the RCM and equivalent range frequency modulation (FM) rate so that they can be uniformly processed in the two-dimensional frequency domain. Next, in the azimuth processing, the proposed method decomposes the Doppler contribution of the transmitter and receiver, respectively. Then, an azimuth NLCS is used to eliminate the spatial variation of the azimuth FM rate. Finally, a range-dependent azimuth filter is constructed to achieve azimuth compression. Simulation results validate the efficiency and effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Breakthroughs in Passive Radar Technologies)
Show Figures

Figure 1

23 pages, 8057 KiB  
Article
Focus Improvement of Spaceborne-Missile Bistatic SAR Data Using the Modified NLCS Algorithm Based on the Method of Series Reversion
by Zirui Xi, Chongdi Duan, Weihua Zuo, Caipin Li, Tonglong Huo, Dongtao Li and He Wen
Remote Sens. 2022, 14(22), 5770; https://doi.org/10.3390/rs14225770 - 15 Nov 2022
Cited by 9 | Viewed by 2000
Abstract
The speed and direction of a missile shifts sharply in the dive phase, making the azimuth frequency modulation (FM) rate change with the azimuthal position, leading to azimuth ambiguities and image distortion. To solve this problem, a modified nonlinear chirp scaling (NLCS) algorithm [...] Read more.
The speed and direction of a missile shifts sharply in the dive phase, making the azimuth frequency modulation (FM) rate change with the azimuthal position, leading to azimuth ambiguities and image distortion. To solve this problem, a modified nonlinear chirp scaling (NLCS) algorithm was adopted to compensate for the azimuth FM rate. First, the geometric configuration and echo signal model of the spaceborne missile bistatic synthetic aperture radar (SAR) were built, and then the Doppler frequency correction was performed, and the 2-D spectrum of the signal was derived by the method of series reversion. Next, range migration correction and range compression were finished in the 2-D frequency domain. Following this, a modified NLCS algorithm was proposed to solve the space variance of Doppler phase problem. After compensating for the azimuth FM rate, the azimuth compression focusing was completed and the imaging result was obtained. Finally, by comparing the calculation amount, imaging effect, and performance index with the traditional NLCS algorithm, it can be concluded that the algorithm reduced the calculation amount by 1.0128 × 108 floating point operations per second (FLOPs) compared with the traditional NLCS algorithm, and the azimuth focusing effect of the edge point was greatly improved. Its resolution, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) were improved by 0.87 m, 3.32 dB, and 1.79 dB, respectively, which proved the effectiveness and feasibility of this method. Full article
Show Figures

Figure 1

22 pages, 19537 KiB  
Article
Focus Improvement of Airborne High-Squint Bistatic SAR Data Using Modified Azimuth NLCS Algorithm Based on Lagrange Inversion Theorem
by Chuang Li, Heng Zhang and Yunkai Deng
Remote Sens. 2021, 13(10), 1916; https://doi.org/10.3390/rs13101916 - 13 May 2021
Cited by 12 | Viewed by 2425
Abstract
In this paper, a modified azimuth nonlinear chirp scaling (NLCS) algorithm is derived for high-squint bistatic synthetic aperture radar (BiSAR) imaging to solve its inherent difficult issues, including the large range cell migration (RCM), azimuth-dependent Doppler parameters, and the sensibility of the higher [...] Read more.
In this paper, a modified azimuth nonlinear chirp scaling (NLCS) algorithm is derived for high-squint bistatic synthetic aperture radar (BiSAR) imaging to solve its inherent difficult issues, including the large range cell migration (RCM), azimuth-dependent Doppler parameters, and the sensibility of the higher order terms. First, using the Lagrange inversion theorem, an accurate spectrum suitable for processing airborne high-squint BiSAR data is introduced. Different from the spectrum that is based on the method of series reversion (MSR), it is allowed to derive the bistatic stationary phase point while retaining the double square root (DSR) of the slant range history. Based the spectrum, a linear RCM correction is used to remove the most of the linear RCM components and mitigate the range-azimuth coupling, and, then, bulk secondary range compression is implemented to compensate the residual RCM and cross-coupling terms. Following this, a modified azimuth NLCS operation is applied to eliminate the azimuth-dependence of Doppler parameters and equalize the azimuth frequency modulation for azimuth compression. The experimental results, with better focusing performance, prove the high accuracy and effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue 2nd Edition Radar and Sonar Imaging and Processing)
Show Figures

Figure 1

21 pages, 8974 KiB  
Article
Squinted Airborne Synthetic Aperture Radar Imaging with Unknown Curved Trajectory
by Wei Pu, Junjie Wu, Yulin Huang and Jianyu Yang
Sensors 2020, 20(21), 6026; https://doi.org/10.3390/s20216026 - 23 Oct 2020
Cited by 5 | Viewed by 2819
Abstract
The imagery of airborne highly squinted synthetic aperture radar (SAR) with curved trajectory is a challenging task due to the translational-variant range cell migration (RCM) and azimuth modulation. However, in most cases of practical application, the curved trajectory cannot be accurately known, which [...] Read more.
The imagery of airborne highly squinted synthetic aperture radar (SAR) with curved trajectory is a challenging task due to the translational-variant range cell migration (RCM) and azimuth modulation. However, in most cases of practical application, the curved trajectory cannot be accurately known, which brings greater difficulties to the imaging problem. To accommodate these issues, we propose a novel motion modelling and optimisation based imaging algorithm for the highly squinted SAR with unknown curved trajectory. First, to correct the translational-variant RCM, a coarse-to-fine RCM correction scheme as well as a range perturbation approach is applied. Afterwards, an optimisation model of motion information under the criterion of minimum entropy is built during the azimuth processing by nonlinear chirp scaling (NLCS). Correspondingly, a differential evolution (DE) optimisation strategy is proposed to estimate the motion information in an iterative manner. We empirically compare the proposed algorithms with several state-of-the-art highly squinted curved SAR imaging algorithms. Numerical results show the effectiveness of the proposed method in the case without any prior information of the curved trajectory. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 2332 KiB  
Article
An Improved Frequency-Domain Image Formation Algorithm for Mini-UAV-Based Forward-Looking Spotlight BiSAR Systems
by Tao Zeng, Zhanze Wang, Feifeng Liu and Chenghao Wang
Remote Sens. 2020, 12(17), 2680; https://doi.org/10.3390/rs12172680 - 19 Aug 2020
Cited by 11 | Viewed by 2963
Abstract
Mini-unmanned aerial vehicle (UAV)-based bistatic forward-looking synthetic aperture radar (SAR) (mini-UAV-based BFSAR) is much more attractive than the monostatic one because of the flexibility of the system geometry selection as well as its simplicity of system operation, especially with the mini-UAV platform. However, [...] Read more.
Mini-unmanned aerial vehicle (UAV)-based bistatic forward-looking synthetic aperture radar (SAR) (mini-UAV-based BFSAR) is much more attractive than the monostatic one because of the flexibility of the system geometry selection as well as its simplicity of system operation, especially with the mini-UAV platform. However, the trajectory of the mini-UAV needs to be accurately modeled since it is very sensitive to the external environment, and the forward-looking configuration results in more severe spatial variance in image formation processing. In the paper, an improved frequency-domain imaging algorithm based on a very accurate slant range model is proposed for mini-UAV-based BFSAR with spotlight illumination. First, a more accurate slant range expression considering the motion characteristics of the UAV and bistatic spotlight configuration is re-derived. Second, a new range nonlinear chirp scaling (NLCS) operator was derived based on the accurate bistatic slant range model. Third, an improved azimuth NLCS operator in the Doppler frequency domain was established for the spotlight illumination of the transmitter and receiver in mini-UAV based BFSAR systems. Finally, the proposed algorithm is validated by both simulations and real datasets. Full article
Show Figures

Graphical abstract

15 pages, 2754 KiB  
Article
Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging
by Tianzhu Yi, Zhihua He, Feng He, Zhen Dong and Manqing Wu
Sensors 2017, 17(11), 2568; https://doi.org/10.3390/s17112568 - 7 Nov 2017
Cited by 9 | Viewed by 4544
Abstract
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk [...] Read more.
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 18729 KiB  
Article
An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS
by Zhongyu Li, Junjie Wu, Yulin Huang, Haiguang Yang and Jianyu Yang
Sensors 2017, 17(1), 216; https://doi.org/10.3390/s17010216 - 23 Jan 2017
Cited by 6 | Viewed by 5412
Abstract
Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for [...] Read more.
Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

23 pages, 4407 KiB  
Article
Focusing Translational Variant Bistatic Forward-Looking SAR Using Keystone Transform and Extended Nonlinear Chirp Scaling
by Junjie Wu, Zhichao Sun, Zhongyu Li, Yulin Huang, Jianyu Yang and Zhe Liu
Remote Sens. 2016, 8(10), 840; https://doi.org/10.3390/rs8100840 - 13 Oct 2016
Cited by 47 | Viewed by 5401
Abstract
Bistatic Synthetic Aperture Radar (SAR) has attracted increasing attention in recent years due to its unique advantages, such as the ability of forward-looking imaging. In translational variant bistatic forward-looking SAR (TV-BFSAR), it is difficult to get a well focused image due to large [...] Read more.
Bistatic Synthetic Aperture Radar (SAR) has attracted increasing attention in recent years due to its unique advantages, such as the ability of forward-looking imaging. In translational variant bistatic forward-looking SAR (TV-BFSAR), it is difficult to get a well focused image due to large range cell migration (RCM) and 2-D variation of both Doppler characteristics and RCM. In this paper, an extended azimuth nonlinear chirp scaling (NLCS) algorithm is proposed to deal with these problems. Firstly, Keystone Transform (KT) is introduced to remove the spatial-variant linear RCM, which is of great significance in TV-BFSAR. Secondly, a correction factor is multiplied to the signal in range frequency domain to compensate for the residual RCM. At last, a fourth-order filtering together with azimuth NLCS is performed in every range gate to equalize both the azimuth-variant Doppler centroid and frequency modulation rate based on the azimuth numerical fitting. The proposed method is verified by simulation and real data processing. Multiple targets are generated and focused by the method, of which the peak sidelobe ratio (PSLR) is around −13 dB and integrated sidelobe ratio (ISLR) is around −10 dB. The method is accurate and can achieve high-resolution focusing for TV-BFSAR data. Full article
Show Figures

Graphical abstract

Back to TopTop