Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = non-thermal biocompatible plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1202 KiB  
Article
Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance
by Szu-Yu Lai, Szu-I Lin, Chia-Wei Chang, Yi-Rou Shen, Yuichi Mine, Zih-Chan Lin, Mei-Ling Fang, Chia-Chih Sung, Chien-Fu Tseng, Tzu-Yu Peng and Chiang-Wen Lee
Polymers 2025, 17(11), 1448; https://doi.org/10.3390/polym17111448 - 23 May 2025
Viewed by 567
Abstract
Polyaryletherketone (PAEK) materials, including polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), possess excellent mechanical properties and biocompatibility; however, their inherently low surface energy limits effective bonding with resin cements. This study investigated the effects of hydrofluoric acid (HF) etching and handheld nonthermal plasma (HNP) treatment [...] Read more.
Polyaryletherketone (PAEK) materials, including polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), possess excellent mechanical properties and biocompatibility; however, their inherently low surface energy limits effective bonding with resin cements. This study investigated the effects of hydrofluoric acid (HF) etching and handheld nonthermal plasma (HNP) treatment on enhancing the adhesive performance of PAEK surfaces. Disk-shaped PEEK (BP) and PEKK (PK) specimens were divided into four groups: APA (airborne-particle abrasion), PLA (nonthermal plasma treatment), LHF (5.0% HF), and HHF (9.5% HF). Surface characterization was performed using a thermal field emission scanning electron microscope (FE-SEM). Surface wettability was evaluated using contact angle goniometry. Cytotoxicity was evaluated using HGF-1 cells exposed to conditioned media and analyzed via PrestoBlue assays. Shear bond strength (SBS) was measured after three aging conditions—NT (no aging), TC (thermocycling), and HA (highly accelerated aging)—using a light-curing resin cement. Failure modes were categorized, and statistical analysis was performed using one-way and two-way ANOVA with Tukey’s HSD test (α = 0.05). Different surface treatments did not affect surface characterization. PLA treatment significantly improved surface wettability, resulting in the lowest contact angles among all groups, followed by HF etching (HHF > LHF), while APA showed the poorest hydrophilicity. Across all treatments, PK exhibited better wettability than BP. Cytotoxicity results confirmed that all surface treatments were nontoxic to HGF-1 cells, indicating favorable biocompatibility. SBS testing demonstrated that PLA-treated specimens achieved the highest and most stable bond strength across all aging conditions. Although HF-treated groups exhibited lower bond strength overall, BP samples treated with HF showed relatively less reduction following aging. Failure mode analysis revealed a shift from mixture and cohesive failures in the NT aging condition to predominantly adhesive failures after TC and HA aging conditions. Notably, the PLA-treated groups retained mixture failure patterns even after aging, suggesting improved interfacial durability. Among the tested methods, PLA treatment was the most effective strategy, enhancing surface wettability, bond strength, and aging resistance without compromising biocompatibility. In summary, the PLA demonstrated the greatest clinical potential for improving the adhesive performance of PAEK when used with light-curing resin cements. Full article
(This article belongs to the Special Issue Polymers and Polymer Composites for Dental Application)
Show Figures

Figure 1

24 pages, 11315 KiB  
Article
Enhancing Ferroptosis in Lung Adenocarcinoma Cells via the Synergistic Action of Nonthermal Biocompatible Plasma and a Bioactive Phenolic Compound
by Sabnaj Khanam, Young June Hong, Youngsun Kim, Eun Ha Choi and Ihn Han
Biomolecules 2025, 15(5), 691; https://doi.org/10.3390/biom15050691 - 9 May 2025
Cited by 1 | Viewed by 1334
Abstract
Para-coumaric acid (p-CA) is a phenolic compound that has antioxidant, anti-inflammatory, and anticancer properties which make it potential for cancer treatment. However, its effectiveness has been limited by poor solubility, rapid metabolism, and poor absorptivity. Nonthermal biocompatible pressure plasma (NBP) has gained attention [...] Read more.
Para-coumaric acid (p-CA) is a phenolic compound that has antioxidant, anti-inflammatory, and anticancer properties which make it potential for cancer treatment. However, its effectiveness has been limited by poor solubility, rapid metabolism, and poor absorptivity. Nonthermal biocompatible pressure plasma (NBP) has gained attention as a cancer treatment due to its ability to generate reactive oxygen and nitrogen species (RONS), inducing oxidative stress that damages cancer cells. This study aimed to investigate the combined effect of NBP and p-CA on the induction of ferroptosis in lung adenocarcinoma via the GPX4, xCT, and NRF2 pathways. H460 and A549 lung adenocarcinoma cells as well as normal lung cells (MRC5) were treated with p-CA, NBP, and their combination. Cell movement, intracellular RONS levels, and lipid peroxidation, along with apoptosis and ferroptosis-related gene expression, were evaluated by co-treatment. Co-treatment also significantly elevated NO2, NO3, and H2O2 levels and reduced cancer cell (H460, A549) viability (26, 31%) without affecting normal cells MRC5 (7%). Elevated MDA levels and changed expression of ferroptotic proteins indicated mitochondrial dysfunction, oxidative damage, lipid peroxidation, and DNA damage, which resulted in the induction of ferroptosis. These findings reveal a novel ferroptosis mechanism, emphasizing co-treatment for delivering bioavailable natural anticancer drugs. Full article
(This article belongs to the Special Issue Signaling Pathways as Therapeutic Targets for Cancer)
Show Figures

Figure 1

16 pages, 3001 KiB  
Article
Plasma-Treated Electrospun PLGA Nanofiber Scaffold Supports Limbal Stem Cells
by Hanan Jafar, Khalid Ahmed, Rama Rayyan, Shorouq Sotari, Rula Buqain, Dema Ali, Muawyah Al Bdour and Abdalla Awidi
Polymers 2023, 15(21), 4244; https://doi.org/10.3390/polym15214244 - 27 Oct 2023
Cited by 4 | Viewed by 2063
Abstract
The corneal epithelial layer is continuously replaced by limbal stem cells. Reconstructing this layer in vitro using synthetic scaffolds is highly needed. Poly-lactic-co-glycolic acid (PLGA) is approved for human use due to its biocompatibility and biodegradability. However, PLGA is hydrophobic, preventing cell adherence [...] Read more.
The corneal epithelial layer is continuously replaced by limbal stem cells. Reconstructing this layer in vitro using synthetic scaffolds is highly needed. Poly-lactic-co-glycolic acid (PLGA) is approved for human use due to its biocompatibility and biodegradability. However, PLGA is hydrophobic, preventing cell adherence to PLGA membranes. PLGA scaffolds were prepared by electrospinning on a custom-made target drum spinning at a rate of 1000 rpm with a flow rate of 0.5 mL/h and voltage at 20 kV, then treated with oxygen plasma at 30 mA using a vacuum coater. Scaffolds were characterized by SEM, mechanically by tensile testing, and thermally by DSC and TGA. In vitro degradation was measured by weight loss and pH drop. Wettability was assessed through water uptake and contact angles measurements. Human limbal stem cells (hLSCs) were isolated and seeded on the scaffolds. Cell attachment and cytotoxicity assay were evaluated on day 1 and 5 after cell seeding. SEM showed regular fiber morphology with diameters ranging between 150 nm and 950 nm. Tensile strength demonstrated similar average stress values for both plasma- and non-plasma-treated samples. Scaffolds also showed gradual degradability over a period of 7–8 weeks. Water contact angle and water absorption were significantly enhanced for plasma-treated scaffolds, indicating a favorable increase in their hydrophilicity. Scaffolds have also supported hLSCs growth and attachment with no signs of cytotoxicity. We have characterized a nanofiber electrospun plasma-treated PLGA scaffold to investigate the mechanical and biological properties and the ability to support the attachment and maintenance of hLSCs. Full article
Show Figures

Figure 1

21 pages, 9786 KiB  
Article
Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells
by Luis Paramo, Arturo Jiménez-Chávez, Iliana E. Medina-Ramirez, Harald Norbert Böhnel, Luis Escobar-Alarcón and Karen Esquivel
Nanomaterials 2023, 13(21), 2824; https://doi.org/10.3390/nano13212824 - 25 Oct 2023
Cited by 10 | Viewed by 2200
Abstract
Nanomaterials such as titanium dioxide and magnetite are increasingly used in several fields, such as water remediation and agriculture. However, this has raised environmental concerns due to potential exposure to organisms like humans. Nanomaterials can cause adverse interactions depending on physicochemical characteristics, like [...] Read more.
Nanomaterials such as titanium dioxide and magnetite are increasingly used in several fields, such as water remediation and agriculture. However, this has raised environmental concerns due to potential exposure to organisms like humans. Nanomaterials can cause adverse interactions depending on physicochemical characteristics, like size, morphology, and composition, when interacting with living beings. To ensure safe use and prevent the risk of exposure to nanomaterials, their biocompatibility must be assessed. In vitro cell cultures are beneficial for assessing nanomaterial–cell interactions due to their easy handling. The present study evaluated the biocompatibility of TiO2, Fe3O4, and TiO2/Fe3O4 nanomaterials thermally treated at 350 °C and 450 °C in erythrocytes and HepG2 cells. According to the hemolysis experiments, non-thermally treated NMs are toxic (>5% hemolysis), but their thermally treated counterparts do not present toxicity (<2%). This behavior indicates that the toxicity derives from some precursor (solvent or surfactant) used in the synthesis of the nanomaterials. All the thermally treated nanomaterials did not show hemolytic activity under different conditions, such as low-light exposure or the absence of blood plasma proteins. In contrast, non-thermally treated nanomaterials showed a high hemolytic behavior, which was reduced after the purification (washing and thermal treatment) of nanomaterials, indicating the presence of surfactant residue used during synthesis. An MTS cell viability assay shows that calcined nanomaterials do not reduce cell viability (>11%) during 24 h of exposure. On the other hand, a lactate dehydrogenase leakage assay resulted in a higher variability, indicating that several nanomaterials did not cause an increase in cell death as compared to the control. However, a holotomographic microscopy analysis reveals a high accumulation of nanomaterials in the cell structure at a low concentration (10 µg mL−1), altering cell morphology, which could lead to cell membrane damage and cell viability reduction. Full article
(This article belongs to the Special Issue Advances in Toxicity of Nanoparticles in Organisms)
Show Figures

Figure 1

19 pages, 5547 KiB  
Article
Effect of Plasma-Treated Water with Magnesium and Zinc on Growth of Chinese Cabbage
by Rida Javed, Sohail Mumtaz, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2023, 24(9), 8426; https://doi.org/10.3390/ijms24098426 - 8 May 2023
Cited by 13 | Viewed by 3012
Abstract
Nonthermal biocompatible plasma (NBP) is an emerging technology in the field of agriculture to boost plant growth. Plasma is a source of various gaseous reactive oxygen and nitrogen species (RONS) and has a promising role in agricultural applications, as the long-lived RONS (H [...] Read more.
Nonthermal biocompatible plasma (NBP) is an emerging technology in the field of agriculture to boost plant growth. Plasma is a source of various gaseous reactive oxygen and nitrogen species (RONS) and has a promising role in agricultural applications, as the long-lived RONS (H2O2, NO2, NO3) in liquid activate signaling molecules in plant metabolism. Plasma-treated water (PTW) has an acidic pH of around 3 to 4, which may be detrimental to pH-sensitive plants. Innovative techniques for producing PTW with a pH value of 6 to 7 under neutral circumstances are desperately required to broaden the application range of NBP in agriculture. Furthermore, Pak Choi (Brassica campestris L.) is a Brassicaceae family green vegetable that has yet to be investigated for its response to NBP. In this work, we proposed an alternate method for neutralizing the pH of PTW by immersing metal ions (Mg2+ and Zn2+) in the PTW and observing its effect on Pak Choi. After synthesizing PTW with MECDBD, we analyzed germination rate and growth parameters, then seedlings for 42 days to show physiological, biochemical, and molecular levels. The germination rate was observed to be higher with PTW and more efficient when metal ions were present. Seedling length and germination rates were dramatically boosted when compared to DI water irrigation. Because of the increased chlorophyll and protein content, the plants responded to the availability of nitrogen by generating highly green leaves. Furthermore, we observed that PTW increases the expression of NR genes and GLR1 genes, which are further increased when metals are submerged in the PTW. Furthermore, PTW and PTW with metals reduced ABI5 and CHO1 which is associated with a growth inhibitor. According to this study, nonthermal plasma might be utilized to significantly improve seed germination and seedlings’ development. Full article
(This article belongs to the Special Issue Bio-Plasma for Molecular Science)
Show Figures

Figure 1

26 pages, 5584 KiB  
Article
Plasma-Polymerised Antibacterial Coating of Ovine Tendon Collagen Type I (OTC) Crosslinked with Genipin (GNP) and Dehydrothermal-Crosslinked (DHT) as a Cutaneous Substitute for Wound Healing
by Ibrahim N. Amirrah, Izzat Zulkiflee, M. F. Mohd Razip Wee, Asad Masood, Kim S. Siow, Antonella Motta and Mh Busra Fauzi
Materials 2023, 16(7), 2739; https://doi.org/10.3390/ma16072739 - 29 Mar 2023
Cited by 9 | Viewed by 2745
Abstract
Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to [...] Read more.
Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to develop an acellular, ready-to-use ovine tendon collagen type I (OTC-I) bioscaffold with an antibacterial coating for the immediate treatment of skin wounds and to prevent infection post-implantation. Two types of crosslinkers, 0.1% genipin (GNP) and dehydrothermal treatment (DHT), were explored to optimise the material strength and biodegradability compared with a non-crosslinked (OTC) control. Carvone plasma polymerisation (ppCar) was conducted to deposit an antibacterial protective coating. Various parameters were performed to investigate the physicochemical properties, mechanical properties, microstructures, biodegradability, thermal stability, surface wettability, antibacterial activity and biocompatibility of the scaffolds on human skin cells between the different crosslinkers, with and without plasma polymerisation. GNP is a better crosslinker than DHT because it demonstrated better physicochemical properties (27.33 ± 5.69% vs. 43 ± 7.64% shrinkage), mechanical properties (0.15 ± 0.15 MPa vs. 0.07 ± 0.08 MPa), swelling (2453 ± 419.2% vs. 1535 ± 392.9%), biodegradation (0.06 ± 0.06 mg/h vs. 0.15 ± 0.16 mg/h), microstructure and biocompatibility. Similarly, its ppCar counterpart, GNPppCar, presents promising results as a biomaterial with enhanced antibacterial properties. Plasma-polymerised carvone on a crosslinked collagen scaffold could also support human skin cell proliferation and viability while preventing infection. Thus, GNPppCar has potential for the rapid treatment of healing wounds. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

18 pages, 6552 KiB  
Article
Plasma-Generated Nitric Oxide Water Mediates Environmentally Transmitted Pathogenic Bacterial Inactivation via Intracellular Nitrosative Stress
by Shweta B. Borkar, Manorma Negi, Neha Kaushik, Shaik Abdul Munnaf, Linh Nhat Nguyen, Eun Ha Choi and Nagendra Kumar Kaushik
Int. J. Mol. Sci. 2023, 24(3), 1901; https://doi.org/10.3390/ijms24031901 - 18 Jan 2023
Cited by 15 | Viewed by 3106
Abstract
Over time, the proportion of resistant bacteria will increase. This is a major concern. Therefore, effective and biocompatible therapeutic strategies against these bacteria are urgently needed. Non-thermal plasma has been exhaustively characterized for its antibacterial activity. This study aims to investigate the inactivation [...] Read more.
Over time, the proportion of resistant bacteria will increase. This is a major concern. Therefore, effective and biocompatible therapeutic strategies against these bacteria are urgently needed. Non-thermal plasma has been exhaustively characterized for its antibacterial activity. This study aims to investigate the inactivation efficiency and mechanisms of plasma-generated nitric oxide water (PG-NOW) on pathogenic water, air, soil, and foodborne Gram-negative and Gram-positive bacteria. Using a colony-forming unit assay, we found that PG-NOW treatment effectively inhibited the growth of bacteria. Moreover, the intracellular nitric oxide (NO) accumulation was evaluated by 4-amino-5-methylamino-2′,7′-dichlorofluorescein diacetate (DAF-FM DA) staining. The reduction of viable cells unambiguously indicates the anti-microbial effect of PG-NOW. The soxR and soxS genes are associated with nitrosative stress, and oxyR regulation corresponds to oxidative stress in bacterial cells. To support the nitrosative effect mediated by PG-NOW, we have further assessed the soxRS and oxyR gene expressions after treatment. Accordingly, soxRS expression was enhanced, whereas the oxyR expression was decreased following PG-NOW treatment. The disruption of cell morphology was observed using scanning electron microscopy (SEM) analysis. In conclusion, our findings furnish evidence of an initiation point for the further progress and development of PG-NOW-based antibacterial treatments. Full article
(This article belongs to the Special Issue Plasma Bioscience and Medicine Molecular Research)
Show Figures

Graphical abstract

24 pages, 7384 KiB  
Article
Development and Evaluation of Cellulose Derivative and Pectin Based Swellable pH Responsive Hydrogel Network for Controlled Delivery of Cytarabine
by Nighat Batool, Rai Muhammad Sarfraz, Asif Mahmood, Umaira Rehman, Muhammad Zaman, Shehla Akbar, Diena M. Almasri and Heba A. Gad
Gels 2023, 9(1), 60; https://doi.org/10.3390/gels9010060 - 12 Jan 2023
Cited by 13 | Viewed by 3690
Abstract
In the present study, pH-sensitive, biodegradable, and biocompatible Na-CMC/pectin poly(methacrylic acid) hydrogels were synthesized using an aqueous free radical polymerization technique and encapsulated by cytarabine (anti-cancer drug). The aim of the project was to sustain the plasma profile of cytarabine through oral administration. [...] Read more.
In the present study, pH-sensitive, biodegradable, and biocompatible Na-CMC/pectin poly(methacrylic acid) hydrogels were synthesized using an aqueous free radical polymerization technique and encapsulated by cytarabine (anti-cancer drug). The aim of the project was to sustain the plasma profile of cytarabine through oral administration. Sodium carboxymethyl cellulose (Na-CMC) and pectin were cross-linked chemically with methacrylic acid (MAA) as a monomer, using methylene bisacrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as an initiator. Prepared hydrogel formulations were characterized for their texture, morphology, cytarabine loading efficiency, compositional and structural properties, thermal nature, stability, swelling response, drug release profile (pH 1.2 and pH 7.4), and in-vivo pharmacokinetic evaluation. Cytarabine-loaded hydrogels were also evaluated for their safety profile by carrying out toxicity studies in rabbits. Results demonstrated efficient encapsulation of cytarabine into the prepared network with loading ranging from 48.5–82.3%. The highest swelling ratio of 39.38 and maximum drug release of 83.29–85.27% were observed at pH 7.4, highlighting the pH responsiveness of the grafted system. Furthermore, cytarabine maximum release was noticed over 24 h, ensuring a sustained release response for all formulations. Histopathological studies and hemolytic profiles confirmed that the prepared hydrogel system was safe, biocompatible, and non-irritant, showing no symptoms of any toxicities and degeneration in organs. Moreover, pharmacokinetic estimation of the cytarabine-loaded hydrogel showed a remarkable increase in the plasma half-life from 4.44 h to 9.24 h and AUC from 22.06 μg/mL.h to 56.94 μg/mL.h. This study revealed that the prepared hydrogel carrier system has excellent abilities in delivering the therapeutic moieties in a controlled manner. Full article
Show Figures

Figure 1

20 pages, 3713 KiB  
Article
Osseointegration Properties of Titanium Implants Treated by Nonthermal Atmospheric-Pressure Nitrogen Plasma
by Sifan Yan, Satoshi Komasa, Akinori Agariguchi, Giuseppe Pezzotti, Joji Okazaki and Kenji Maekawa
Int. J. Mol. Sci. 2022, 23(23), 15420; https://doi.org/10.3390/ijms232315420 - 6 Dec 2022
Cited by 7 | Viewed by 3888
Abstract
Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the [...] Read more.
Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the surface properties and circumvent the negative effects of material aging on titanium implants by using a portable handheld nonthermal plasma device capable of piezoelectric direct discharge to treat pure titanium discs with nitrogen gas. We evaluated the osteogenic properties of the treated samples by surface morphology and elemental analyses, as well as in vitro and in vivo experiments. The results showed that nonthermal atmospheric-pressure nitrogen plasma can improve the hydrophilicity of pure titanium without damaging its surface morphology while introducing nitrogen-containing functional groups, thereby promoting cell attachment, proliferation, and osseointegration to some extent. Therefore, nitrogen plasma treatment may be a promising method for the rapid surface treatment of titanium implants. Full article
(This article belongs to the Special Issue Advances in Dental Bio-Nanomaterials (II))
Show Figures

Figure 1

14 pages, 1773 KiB  
Review
Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications
by Ihn Han, Sohail Mumtaz and Eun Ha Choi
Viruses 2022, 14(12), 2685; https://doi.org/10.3390/v14122685 - 30 Nov 2022
Cited by 14 | Viewed by 3589
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. [...] Read more.
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future. Full article
(This article belongs to the Special Issue Advances in Antiviral Agents against SARS-CoV-2 and Its Variants)
Show Figures

Figure 1

13 pages, 22569 KiB  
Article
A Non-thermal Biocompatible Plasma-Modified Chitosan Scaffold Enhances Osteogenic Differentiation in Bone Marrow Stem Cells
by Ihn Han, Juie Nahushkumar Rana, Ji-Hye Kim, Eun Ha Choi and Youngsun Kim
Pharmaceutics 2022, 14(2), 465; https://doi.org/10.3390/pharmaceutics14020465 - 21 Feb 2022
Cited by 16 | Viewed by 2841
Abstract
Non-thermal biocompatible plasma (NBP) was considered as an efficient tool in tissue engineering to modify the surface of biomaterials. Three-dimensional chitosan scaffolds have been extensively used in different ways because it holds some remarkable properties, including biodegradability and biocompatibility. In this study, we [...] Read more.
Non-thermal biocompatible plasma (NBP) was considered as an efficient tool in tissue engineering to modify the surface of biomaterials. Three-dimensional chitosan scaffolds have been extensively used in different ways because it holds some remarkable properties, including biodegradability and biocompatibility. In this study, we evaluated the osteogenic potential of NBP-treated chitosan scaffolds using two different plasma sources: a dielectric barrier discharge (NBP-DBD) and a soft jet (NBP-J). The surface modification of the scaffold was evaluated using scanning electron microscopy. For osteogenic differentiation of cells, proliferation and differentiation were tested by using bone marrow-derived stem cells (BMSCs). We observed that cell viability using NBP-DBD and NBP-J treated chitosan scaffolds yielded significant improvements in cell viability and differentiation. The results obtained with MTT and live/dead assays showed that NBP-modified scaffold increases cell metabolic by MTT assay and live/dead assay. It also observed that the NBP treatment is more effective at 5 min with DBD and was selected for further investigations. Enhanced osteogenic differentiation was observed using NBP-treated scaffolds, as reflected by increased alkaline phosphatase activity. Our findings showed that NBP is an innovative and beneficial tool for modifying chitosan scaffolds to increase their activity, making them suitable as biocompatible materials and for bone tissue engineering. Full article
(This article belongs to the Special Issue Application of Chitosan and Hyaluronan in Medicine)
Show Figures

Figure 1

32 pages, 9581 KiB  
Review
Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review
by Monjurul Hoque, Ciara McDonagh, Brijesh K. Tiwari, Joseph P. Kerry and Shivani Pathania
Appl. Sci. 2022, 12(3), 1346; https://doi.org/10.3390/app12031346 - 27 Jan 2022
Cited by 54 | Viewed by 7643
Abstract
Biopolymers, like polysaccharides and proteins, are sustainable and green materials with excellent film-forming potential. Bio-based films have gained a lot of attention and are believed to be an alternative to plastics in next-generation food packaging. Compared to conventional plastics, biopolymers inherently have certain [...] Read more.
Biopolymers, like polysaccharides and proteins, are sustainable and green materials with excellent film-forming potential. Bio-based films have gained a lot of attention and are believed to be an alternative to plastics in next-generation food packaging. Compared to conventional plastics, biopolymers inherently have certain limitations like hydrophilicity, poor thermo-mechanical, and barrier properties. Therefore, the modification of biopolymers or their films provide an opportunity to develop packaging materials with desired characteristics. Among different modification approaches, the application of cold plasma has been a very efficient technology to enhance the functionality and interfacial characteristics of biopolymers. Cold plasma is biocompatible, shows uniformity in treatment, and is suitable for heat-sensitive components. This review provides information on different plasma generating equipment used for the modification of films and critically analyses the impact of cold plasma on packaging properties of films prepared from protein, polysaccharides, and their combinations. Most studies to date have shown that plasma treatment effectively enhances surface characteristics, mechanical, and thermal properties, while its impact on the improvement of barrier properties is limited. Plasma treatment increases surface roughness that enables surface adhesion, ink printability, and reduces the contact angle. Plasma-treated films loaded with antimicrobial compounds demonstrate strong antimicrobial efficacy, mainly due to the increase in their diffusion rate and the non-thermal nature of cold plasma that protects the functionality of bioactive compounds. This review also elaborates on the existing challenges and future needs. Overall, it can be concluded that the application of cold plasma is an effective strategy to modify the inherent limitations of biopolymer-based packaging materials for food packaging applications. Full article
Show Figures

Figure 1

11 pages, 1851 KiB  
Article
Improvement of Cell Growth of Uterosacral Ligament Fibroblast Derived from Pelvic Organ Prolapse Patients by Cold Atmospheric Plasma Treated Liquid
by Ihn Han, Seung Ah Choi, Seul I Kim, Eun Ha Choi, Young Joo Lee and Youngsun Kim
Cells 2021, 10(10), 2728; https://doi.org/10.3390/cells10102728 - 13 Oct 2021
Cited by 5 | Viewed by 3545
Abstract
Pelvic organ prolapse (POP) is a chronic disorder that affects quality of life in women. Several POP treatments may be accompanied by abrasion, constant infection, and severe pain. Therefore, new treatment methods and improvements in current treatments for POP are required. Non-thermal atmospheric-pressure [...] Read more.
Pelvic organ prolapse (POP) is a chronic disorder that affects quality of life in women. Several POP treatments may be accompanied by abrasion, constant infection, and severe pain. Therefore, new treatment methods and improvements in current treatments for POP are required. Non-thermal atmospheric-pressure plasma is a rising biomedical therapy that generates a mixed cocktail of reactive species by different mechanisms. In this study, we applied a cylinder-type dielectric barrier discharge plasma device to create a plasma-treated liquid (PTL). The PTL was added to primary cultured human uterosacral ligament fibroblast (hUSLF) cells from POP patients at each stage. Surprisingly, treatment with diluted PTL increased hUSLF cell viability but decreased ovarian cancer cell viability. PTL also decreased cell apoptosis in hUSLF cells but increased it in SKOV3 cells. Our results suggest that PTL protects hUSLF cells from cell apoptosis by controlling the p53 pathway and improves cell viability, implying that PTL is a promising application for POP therapy. Full article
(This article belongs to the Special Issue p53 Regulation Mechanisms)
Show Figures

Figure 1

13 pages, 3282 KiB  
Article
Non-Thermal Biocompatible Plasma Jet Induction of Apoptosis in Brain Cancer Cells
by Mahmuda Akter, Jun Sup Lim, Eun Ha Choi and Ihn Han
Cells 2021, 10(2), 236; https://doi.org/10.3390/cells10020236 - 26 Jan 2021
Cited by 18 | Viewed by 4137
Abstract
Glioblastoma multiforme (GBM) is a highly malignant and rapidly advancing astrocytic brain tumor in adults. Current therapy possibilities are chemotherapy, surgical resection, and radiation. The complexity of drug release through the blood-brain barrier, tumor reaction to chemotherapy, and the inherent resistance of tumor [...] Read more.
Glioblastoma multiforme (GBM) is a highly malignant and rapidly advancing astrocytic brain tumor in adults. Current therapy possibilities are chemotherapy, surgical resection, and radiation. The complexity of drug release through the blood-brain barrier, tumor reaction to chemotherapy, and the inherent resistance of tumor cells present challenges. New therapies are needed for individual use or combination with conventional methods for more effective treatment and improved survival for patients. GBM is difficult to treat because it grows quickly, spreads finger-shaped tentacles, and creates an irregular margin of normal tissue surrounding the tumor. Non-thermal biocompatible plasma (NBP) has recently been shown to selectively target cancer cells with minimal effects on regular cells, acting by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS). We applied a soft jet plasma device with a syringe shape to U87 MG cells and astrocytes. Our results show that NBP-J significantly inhibits cell proliferation and changes morphology, induces cell cycle arrest, inhibits the survival pathway, and induces apoptosis. Our results indicate that NBP-J may be an efficient and safe clinical device for brain cancer therapy. Full article
(This article belongs to the Special Issue p53 Regulation Mechanisms)
Show Figures

Figure 1

14 pages, 4230 KiB  
Article
Inactivation of Infectious Bacteria Using Nonthermal Biocompatible Plasma Cabinet Sterilizer
by Mahmuda Akter, Dharmendra Kumar Yadav, Se Hoon Ki, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2020, 21(21), 8321; https://doi.org/10.3390/ijms21218321 - 6 Nov 2020
Cited by 20 | Viewed by 3924
Abstract
Nonthermal, biocompatible plasma (NBP) is a promising unique state of matter that is effective against a wide range of pathogenic microorganisms. This study focused on a sterilization method for bacteria that used the dielectric barrier discharge (DBD) biocompatible plasma cabinet sterilizer as an [...] Read more.
Nonthermal, biocompatible plasma (NBP) is a promising unique state of matter that is effective against a wide range of pathogenic microorganisms. This study focused on a sterilization method for bacteria that used the dielectric barrier discharge (DBD) biocompatible plasma cabinet sterilizer as an ozone generator. Reactive oxygen species play a key role in inactivation when air or other oxygen-containing gases are used. Compared with the untreated control, Escherichia coli(E. coli), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (sepsis) were inhibited by approximately 99%, or were nondetectable following plasma treatment. Two kinds of plasma sterilizers containing six- or three-chamber cabinets were evaluated. There was no noticeable difference between the two configurations in the inactivation of microorganisms. Both cabinet configurations were shown to be able to reduce microbes dramatically, i.e., to the nondetectable range. Therefore, our data indicate that the biocompatible plasma cabinet sterilizer may prove to be an appropriate alternative sterilization procedure. Full article
Show Figures

Figure 1

Back to TopTop