Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = new extended direct algebraic methodology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2581 KiB  
Article
Analytical and Dynamical Study of Solitary Waves in a Fractional Magneto-Electro-Elastic System
by Sait San, Beenish and Fehaid Salem Alshammari
Fractal Fract. 2025, 9(5), 309; https://doi.org/10.3390/fractalfract9050309 - 10 May 2025
Cited by 3 | Viewed by 342
Abstract
Magneto-electro-elastic materials, a novel class of smart materials, exhibit remarkable energy conversion properties, making them highly suitable for applications in nanotechnology. This study focuses on various aspects of the fractional nonlinear longitudinal wave equation (FNLWE) that models wave propagation in a magneto-electro-elastic circular [...] Read more.
Magneto-electro-elastic materials, a novel class of smart materials, exhibit remarkable energy conversion properties, making them highly suitable for applications in nanotechnology. This study focuses on various aspects of the fractional nonlinear longitudinal wave equation (FNLWE) that models wave propagation in a magneto-electro-elastic circular rod. Using the direct algebraic method, several new soliton solutions were derived under specific parameter constraints. In addition, Galilean transformation was employed to explore the system’s sensitivity and quasi-periodic dynamics. The study incorporates 2D, 3D, and time-series visualizations as effective tools for analyzing quasi-periodic behavior. The results contribute to a deeper understanding of the nonlinear dynamical features of such systems and demonstrate the robustness of the applied methodologies. This research not only extends existing knowledge of nonlinear wave equations but also introduces a substantial number of new solutions with broad applicability. Full article
Show Figures

Figure 1

23 pages, 5525 KiB  
Article
Explicit Soliton Structure Formation for the Riemann Wave Equation and a Sensitive Demonstration
by Sheikh Zain Majid, Waqas Ali Faridi, Muhammad Imran Asjad, Magda Abd El-Rahman and Sayed M. Eldin
Fractal Fract. 2023, 7(2), 102; https://doi.org/10.3390/fractalfract7020102 - 17 Jan 2023
Cited by 70 | Viewed by 2913
Abstract
The motive of the study was to explore the nonlinear Riemann wave equation, which describes the tsunami and tidal waves in the sea and homogeneous and stationary media. This study establishes the framework for the analytical solutions to the Riemann wave equation using [...] Read more.
The motive of the study was to explore the nonlinear Riemann wave equation, which describes the tsunami and tidal waves in the sea and homogeneous and stationary media. This study establishes the framework for the analytical solutions to the Riemann wave equation using the new extended direct algebraic method. As a result, the soliton patterns of the Riemann wave equation have been successfully illustrated, with exact solutions offered by the plane solution, trigonometry solution, mixed hyperbolic solution, mixed periodic and periodic solutions, shock solution, mixed singular solution, mixed trigonometric solution, mixed shock single solution, complex soliton shock solution, singular solution, and shock wave solutions. Graphical visualization is provided of the results with suitable values of the involved parameters by Mathematica. It was visualized that the velocity of the soliton and the wave number controls the behavior of the soliton. We are confident that our research will assist physicists in predicting new notions in mathematical physics. Full article
Show Figures

Figure 1

21 pages, 4683 KiB  
Article
The Enhancement of Energy-Carrying Capacity in Liquid with Gas Bubbles, in Terms of Solitons
by Umair Asghar, Waqas Ali Faridi, Muhammad Imran Asjad and Sayed M. Eldin
Symmetry 2022, 14(11), 2294; https://doi.org/10.3390/sym14112294 - 2 Nov 2022
Cited by 16 | Viewed by 1827
Abstract
A generalized (3 + 1)-dimensional nonlinear wave is investigated, which defines many nonlinear phenomena in liquid containing gas bubbles. Basic theories of the natural phenomenons are usually described by nonlinear evolution equations, for example, nonlinear sciences, marine engineering, fluid dynamics, scientific applications, and [...] Read more.
A generalized (3 + 1)-dimensional nonlinear wave is investigated, which defines many nonlinear phenomena in liquid containing gas bubbles. Basic theories of the natural phenomenons are usually described by nonlinear evolution equations, for example, nonlinear sciences, marine engineering, fluid dynamics, scientific applications, and ocean plasma physics. The new extended algebraic method is applied to solve the model under consideration. Furthermore, the nonlinear model is converted into an ordinary differential equation through the next wave transformation. A well-known analytical approach is used to obtain more general solutions of different types with the help of Mathematica. Shock, singular, mixed-complex solitary-shock, mixed-singular, mixed-shock singular, mixed trigonometric, periodic, mixed-periodic, mixed-hyperbolic solutions are obtained. As a result, it is found that the energy-carrying capacity of liquid with gas bubbles and its propagation can be increased. The stability of the considered model is ensured by the modulation instability gain spectrum generated and proposed with acceptable constant values. Two-dimensional, three-dimensional, and contour surfaces are plotted to see the physical properties of the obtained solutions. Full article
Show Figures

Figure 1

29 pages, 761 KiB  
Article
Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics
by Dmytro Sytnyk and Roderick Melnik
Math. Comput. Appl. 2021, 26(4), 73; https://doi.org/10.3390/mca26040073 - 23 Oct 2021
Cited by 14 | Viewed by 5739
Abstract
Nonlocal models are ubiquitous in all branches of science and engineering, with a rapidly expanding range of mathematical and computational applications due to the ability of such models to capture effects and phenomena that traditional models cannot. While spatial nonlocalities have received considerable [...] Read more.
Nonlocal models are ubiquitous in all branches of science and engineering, with a rapidly expanding range of mathematical and computational applications due to the ability of such models to capture effects and phenomena that traditional models cannot. While spatial nonlocalities have received considerable attention in the research community, the same cannot be said about nonlocality in time, in particular when nonlocal initial conditions are present. This paper aims at filling this gap, providing an overview of the current status of nonlocal models and focusing on the mathematical treatment of such models when nonlocal initial conditions are at the heart of the problem. Specifically, our representative example is given for a nonlocal-in-time problem for the abstract Schrödinger equation. By exploiting the linear nature of nonlocal conditions, we derive an exact representation of the solution operator under assumptions that the spectrum of Hamiltonian is contained in the horizontal strip of the complex plane. The derived representation permits us to establish the necessary and sufficient conditions for the problem’s well-posedness and the existence of its solution under different regularities. Furthermore, we present new sufficient conditions for the existence of the solution that extend the existing results in this field to the case when some nonlocal parameters are unbounded. Two further examples demonstrate the developed methodology and highlight the importance of its computer algebra component in the reduction procedures and parameter estimations for nonlocal models. Finally, a connection of the considered models and developed analysis is discussed in the context of other reduction techniques, concentrating on the most promising from the viewpoint of data-driven modelling environments, and providing directions for further generalizations. Full article
Show Figures

Figure 1

Back to TopTop