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Abstract: A generalized (3 + 1)-dimensional nonlinear wave is investigated, which defines many
nonlinear phenomena in liquid containing gas bubbles. Basic theories of the natural phenomenons
are usually described by nonlinear evolution equations, for example, nonlinear sciences, marine
engineering, fluid dynamics, scientific applications, and ocean plasma physics. The new extended
algebraic method is applied to solve the model under consideration. Furthermore, the nonlinear
model is converted into an ordinary differential equation through the next wave transformation. A
well-known analytical approach is used to obtain more general solutions of different types with the
help of Mathematica. Shock, singular, mixed-complex solitary-shock, mixed-singular, mixed-shock
singular, mixed trigonometric, periodic, mixed-periodic, mixed-hyperbolic solutions are obtained. As
a result, it is found that the energy-carrying capacity of liquid with gas bubbles and its propagation
can be increased. The stability of the considered model is ensured by the modulation instability
gain spectrum generated and proposed with acceptable constant values. Two-dimensional, three-
dimensional, and contour surfaces are plotted to see the physical properties of the obtained solutions.

Keywords: new extended direct algebraic methodology; generalized (3 + 1) dimensional nonlinear
equation; gas bubble; modulation instability

1. Introduction

Researchers’ attention has been drawn to liquids through gas bubbles because they are
common in physics, engineering, nature, science, and life. Bubble liquid mixture equations
have been extended, to express the weakly nonlinear waves through liquids keeping gas
bubbles [1,2]. As a result, it is found that the energy-carrying capacity of a liquid and its
propagation can be increased with gas bubbles, as seen in some applied and scientific fields,
similarly condensed matter physics, fluid mechanics, plasma physics, elastic mechanics,
and particle physics [3–10]. There are many nonlinear wave phenomena in nature that
can be explained analytically. Therefore, one of the most important achievements in
mathematical physics is the study of integrable properties and the finding of exact solutions
as nonlinear evolution equations [11]. In recent years, finding the exact solutions of NLEEs
has also become important in research. Some nonlinear physical phenomena have been
described using nonlinear evolution equations (NLEEs) and the propagation properties of
waves [12–15].

It is well known that generalized and successful methods are available to study non-
linear equations. Namely, the KP hierarchy-reduction method [16], the Hirota’s bilinear
method [17–23], the modified ( G′

G2 ) and ( 1
G′ ) expansion method [24], the improved tan( φ

2 )
expansion method [25], the sine-Gordon expansion [26], the optimal galerkin-homotopy
asymptotic method [27], the inverse scattering transformation method [28,29], the homo-
topy perturbation method [30], the Backlund transformation method [31], Lie symmetry
analysis [32], a kind of new (G′

G )-expansion method [33], the (G′
G , 1

G ), and so on. The exact
solutions of NLEEs can supply a wealth of physical data and additional understanding
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into the physical components of the problems [34]. It is important to find the exact solu-
tions to NLEEs, e.g., soliton [35], travelling wave [36] and periodic wave solutions [37].
Accordingly, via Bell-polynomial manipulation [38], the integrability of NLEEs could be
defined by a number of significant factors, such as infinite conservation laws, bilinear form,
the Painleve test, Lax pairs, and infinite symmetries. As we know that there are many
methods, Hirota bilinear methodology [39], Backlund transformation (BT) [40], polyno-
mial expansion methodology [41], and Hirota-Riemann methodology [42] were suggested.
According to several studies, the linear acoustic-wave propagation occurs in isothermal
bubbly liquids due to the phenomena of one spatial dimension . In the three-dimensional
(3D) case, nonlinear waves in liquid containing gas bubbles are considered. The nonlinear
evolution equation is given for a description of long nonlinear pressure waves. The Hi-
rota method is used to find multiple solutions to the nonintegrable evolution equation in
three dimensions [43]. The model of transcillatory heat transfer is induced by gas bubbles
buoyant in liquid. The algorithms for calculating the coefficient of transcillatory transfer
have been discovered [44]. Higher-order terms with respect to the small parameter are
taken into account in the derivation of the equation for nonlinear waves. For long weakly
nonlinear waves, a nonlinear differential equation is derived that takes into consideration
liquid viscosity, inter-phase heat transfer, and surface tension [45].

The first analysis of the bubble dynamics issue was carried out by Rayleigh [46].
According to some studies, linear acoustic-wave propagation occurs in isothermal bubbly
liquids in the case of one spatial dimension [1] . Nonlinear wave studies have focused on the
research of the bubbly liquid, which has drawn the interest of different researchers because
liquids with gas bubbles are common in many professions, including engineering and
medical science. The generalized (3 + 1) dimensional nonlinear wave equation narrating a
liquid through gas bubbles is one of these models [47].

(Ωt + σ1ΩΩx + σ2ΩΩxxx + σ3Ωx)x + σ4ΩΩyy + σ5Ωzz = 0, (1)

where Ω is the wave amplitude function of the scaled spatial coordinates x, y, z and the
temporal coordinate t is the partial derivative represented by the subscripts x, y, z, and t.
σ1, σ2, σ3, σ4, and σ5 describe the bubble-liquid non-linearity, the bubble-liquid dispersion,
the bubble-liquid viscosity, the y transverse perturbation, and the z transverse perturbation.
Additionally, σ3 = 0 was simplified to the generalized (3 + 1) dimensional Kadomtsev–
Petviashvili equation . It is noted that the solutions for its travelling wave, bright-dark
soliton, and rogue wave were also derived. The pressure dependency of thermal expansion
coefficient conductivity may be the cause of the coefficients’ temporal fluctuation of seawa-
ter coupled with the oceanic temperature-salinity relation’s large-scale meridional variation,
transforming hydrography from deep to shallow water topography of the continental shelf
and other dynamical conditions [48].

Recently, Akbulut et al. [49] explored, using Nnucci’s reduction, increased, and mod-
ified, Kudryashov algorithms, and solitary waves for the generalized nonlinear wave
equation in (3 + 1) dimensions with gas bubbles successfully determined . Akbulut de-
veloped the three different classes of solitary wave solution. This implies that there are
many solutions that are not explained yet, and to the best of our knowledge the modulation
instability analysis is still a mystery. Our purpose is to develop more propagated structures;
we will apply a generalized expansion method and derive thirty-seven different solutions,
as well as provide a graphical explanation. The stability of our model will be discussed
through the modulational instability gain spectrum.

The main motive of this article is to generalize the (3 + 1) dimensional nonlinear wave
equation describing liquid with gas bubbles, in order to find the exact solutions . The new
extended direct algebraic method will be used to achieve this goal. In Section 2, the proper
details with respect to the method will be presented. In the following section, the different
solutions to the provided model will be obtained using the new extended direct algebraic
methods. Graphical representations for a derived solution will be described in Sections 3
for stability analysis. Finally, the conclusions will be provided.
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2. Construction of Analytical Solutions
2.1. New Extended Direct Algebraic Method

The proposed method is successfully applied to the complex nonlinear governing
model [50].

We have a nonlinear partial differential equation:

P(Ω, Ωx, Ωt, Ωxt, Ωxx, . . .) = 0, (2)

whereP is the polynomial function in Ω, and its spatial independent variables and temporal
and accommodating Ω(x, y, z, t) is an unknown function of its partial derivatives .
It can be changed through the ordinary differential equation:

Q(E,E′,E′′, . . .) = 0. (3)

Apply the following transformation:

Ω(x, y, z, t) = E(λ), (4)

where λ = k1x + k2y + k3t. Let Equation (3) have the solution

E(λ) =
m

∑
j=0

[
aj(R(λ))j

]
, (5)

where,

R′(λ) = log[χ]
(

α + βR(λ) + γR2(λ)
)

, χ 6= 0, 1, (6)

where, α, β, and γ are real constants and S = β2 − 4αγ. The general roots regrading the
parameters α, β, and γ of Equation (6) are

(Family 1): When β2 − 4αγ < 0, and γ 6= 0,

R1(λ) = −
β

2γ
+

√
−S
2γ

tanχ

(√
−S
2

λ

)
, (7)

R2(λ) = −
β

2γ
−
√
−S
2γ

cotχ

(√
−S
2

λ

)
, (8)

R3(λ) = −
β

2γ
+

√
−S
2γ

(
tanχ

(√
−Sλ

)
±
√

mn secχ

(√
−Sλ

))
, (9)

R4(λ) = −
β

2γ
+

√
−S
2γ

(
cotχ

(√
−Sλ

)
±
√

mn cscχ

(√
−Sλ

))
, (10)

R5(λ) = −
β

2γ
+

√
−S
4γ

(
tanχ

(√
−S
4

λ

)
− cotχ

(√
−S
4

λ

))
. (11)

(Family 2): When β2 − 4αγ > 0, and γ 6= 0,

R6(λ) = −
β

2γ
−
√
S

2γ
tanhχ

(√
S

2
λ

)
, (12)
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R7(λ) = −
β

2γ
−
√
S

2γ
cothχ

(√
S

2
λ

)
, (13)

R8(λ) = −
β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sλ
)
± i
√

mnsechχ

(√
Sλ
))

, (14)

R9(λ) = −
β

2γ
+

√
S

2γ

(
− cothχ

(√
Sλ
)
±
√

mncschχ

(√
Sλ
))

, (15)

R10(λ) = −
β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
λ

)
+ cothχ

(√
S

4
λ

))
. (16)

(Family 3): When αγ > 0 and β = 0,

R11(λ) =

√
α

γ
tanχ(

√
αγλ), (17)

R12(λ) = −
√

α

γ
cotχ(

√
αγλ), (18)

R13(λ) =

√
α

γ

(
tanχ(2

√
αγλ)±

√
mn secχ(2

√
αγλ)

)
, (19)

R14(λ) =

√
α

γ

(
− cotχ(2

√
αγλ)±

√
mn cscχ(2

√
αγλ)

)
, (20)

R15(λ) =
1
2

√
α

γ

(
tanχ

(√
αγ

2
λ

)
− cotχ

(√
αγ

2
λ

))
. (21)

(Family 4): When αγ < 0 and β = 0,

R16(λ) = −
√
− α

γ
tanhχ

(√
−αγλ

)
, (22)

R17(λ) = −
√
− α

γ
cothχ

(√
−αγλ

)
, (23)

R18(λ) =

√
− α

γ

(
− tanhχ

(
2
√
−αγλ

)
± i
√

mnsechχ

(
2
√
−αγλ

))
, (24)

R19(λ) =

√
− α

γ

(
− cothχ

(
2
√
−αγλ

)
±
√

mncschχ

(
2
√
−αγλ

))
, (25)

R20(λ) = −
1
2

√
− α

γ

(
tanhχ

(√
−αγ

2
λ

)
+ cothχ

(√
−αγ

2
λ

))
. (26)
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(Family 5): When β = 0 and α = γ,

R21(λ) = tanχ(αλ), (27)

R22(λ) = − cotχ(αλ), (28)

R23(λ) = tanχ(2αλ)±
√

mn secχ(2αλ), (29)

R24(λ) = − cotχ(2αλ)±
√

mn cscχ(2αλ), (30)

R25(λ) =
1
2

(
tanχ

(α

2
λ
)
− cotχ

(α

2
λ
))

. (31)

(Family 6): When β = 0 and γ = −α,

R26(λ) = − tanhχ(αλ), (32)

R27(λ) = − cothχ(αλ), (33)

R28(λ) = − tanhχ(2αλ)± i
√

mnsechχ(2αλ), (34)

R29(λ) = − cotχ(2αλ)±
√

mn cschχ(2αλ), (35)

R30(λ) = −
1
2

(
tanhχ

(α

2
λ
)
+ cothχ

(α

2
λ
))

. (36)

(Family 7): When β2 = 4αγ,

R31(λ) =
−2α(βλ log[χ] + 2)

β2λ log[χ]
. (37)

(Family 8): When α = pq, (q 6= 0), β = p, and γ = 0,

R32(λ) = χpλ − q. (38)

(Family 9): When β = γ = 0,

R33(λ) = αλ log[χ]. (39)

(Family 10): When β = α = 0,

R34(λ) =
−1

γλ log[χ]
. (40)

(Family 11): When α = 0 and β 6= 0,

R35(λ) = −
mβ

γ(coshχ(βλ)− sinhχ(βλ) + m)
, (41)

R36(λ) = −
β(sinhχ(βλ) + coshχ(βλ))

γ(sinhχ(βλ) + coshχ(βλ) + n)
. (42)
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(Family 12): When γ = pq, (q 6= 0), β = p, and α = 0,

R37(λ) = −
mχpλ

m− qnχpλ
. (43)

sinhχ(λ) =
mχλ − nχ−λ

2
, coshχ(λ) =

mχλ + nχ−λ

2
,

tanhχ(λ) =
mχλ − nχ−λ

mχλ + nχ−λ
, cothχ(λ) =

mχλ + nχ−λ

mχλ − nχ−λ
,

sechχ(λ) =
2

mχλ + nχ−λ
, cschχ(λ) =

2
mχλ − nχ−λ

,

sinχ(λ) =
mχiλ − nχ−iλ

2i
, cosχ(λ) =

mχiλ + nχ−iλ

2
,

tanχ(λ) = −i
mχiλ − nχ−iλ

mχiλ + nχ−iλ , cotχ(λ) = i
mχiλ + nχ−iλ

mχiλ − nχ−iλ ,

where, m, n > 0 are arbitrary constant deformation parameters.

2.2. Application of New Extended Direct Algebraic Method

In this portion, we will apply the new extended distinct algebraic methodology to the
generalized energy-carrying capacity of liquids in the presence of gas bubbles. To extract
the solutions of Equation (1), we set up a traveling wave transformation:

M(x, y, z, t) = E(λ), where λ = δ($1x + $2y + $3z−vt), (44)

where δ is free constant parameter and v is the speed of soliton, and $1, $2, $3 are the
direction of the cosine.

$2
1 + $2

2 + $2
3 = 1.

Equation (1) takes the form by introducing Equation (44),

2(σ3$2
1 + σ4$2

2 + σ5$2
3 − $3v)E+ σ1$2

1E2 + 2σ2δ2σ2$4
1E′′ = 0. (45)

The solution can be revealed by the setting of the homogeneous balancing constant of
Equation (45):

E(λ) = a0 + a1 R(λ) + a2 R(λ)2, (46)

where,

R′(λ) = α ln(χ) + βR(ξ) ln(χ) + γ (R(ξ))2 ln(χ), χ 6= 0, 1, (47)

now, we plug the solution of Equation (46) into (47) and identify the coefficient of the
dissimilar powers:
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R(λ)0 : 2 δ2σ2$1
4a1β (ln(χ))2α + 4 δ2σ2$1

4a2α2(ln(χ))2 + σ1$1
2a0

2 − 2 a0$1v + 2 a0σ4$2
2

+ 2 a0σ5$3
2 + 2 a0σ3$1

2

R(λ)1 : 2 σ1$1
2a0a1 + 2 δ2σ2$1

4a1β2(ln(χ))2 + 2 a1σ3$1
2 + 2 a1σ4$2

2 + 2 a1σ5$3
2 − 2 a1$1v

+ 4 δ2σ2$1
4a1γ (ln(χ))2α + 12 δ2σ2$1

4a2α (ln(χ))2β

R(λ)2 : 16 δ2σ2$1
4a2α (ln(χ))2γ + 6 δ2σ2$1

4a1β (ln(χ))2γ + 8 δ2σ2$1
4a2β2(ln(χ))2

+ 2 σ1$1
2a0a2 + 2 a2σ3$1

2 + 2 a2σ4$2
2 + 2 a2σ5$3

2 − 2 a2$1v + σ1$1
2a1

2

R(λ)3 : 20 δ2σ2$1
4a2β (ln(χ))2γ + 4 δ2σ2$1

4a1γ2(ln(χ))2 + 2 σ1$1
2a1a2

R(λ)4 : 12 δ2σ2$1
4a2γ2(ln(χ))2 + σ1$1

2a2
2.

(48)

The algebraic system of Equation (48) is solved with the assistance of maple, and we
will obtain the following:
Set 1:[

a0 = −
12αδ2γln(χ)2σ2$2

1
σ1

, a1 = −
12ln(χ)2γδ2σ2$2

1β

σ1
, a2 = −

12ln(χ)2γ2δ2σ2$2
1

σ1

v =
δ2σ2$4

1ln(χ)[4γα + β2] + σ3$2
1 + σ4$2

2 + σ5$2
3

$1

]
.

(49)

The general solution of Equation (1) by putting Equation (49) in Equation (46) is

Ω(x, y, z, t) = −
12αδ2γln(χ)2σ2$2

1
σ1

−
12ln(χ)2γδ2σ2$2

1β

σ1
[Ri(λ)]−

12ln(χ)2γ2δ2σ2$2
1

σ1
[Ri(λ)]

2. (50)

Set 2:[
a0 = −

2δ2ln(χ)2σ2$2
1(2αγ + β2)

σ1
, a1 = −

12ln(χ)2γδ2σ2$2
1β

σ1
, a2 = −

12ln(χ)2γ2δ2σ2$2
1

σ1
,

v =
δ2σ2$4

1ln(χ)[4γα− β2] + σ3$2
1 + σ4$2

2 + σ5$2
3

$1

]
.

(51)

The general solution of Equation (1) by putting Equation (51) in Equation (46) is:

Ω(x, y, z, t) = −
2δ2ln(χ)2σ2$2

1(2αγ + β2)

σ1
−

12ln(χ)2γδ2σ2$2
1β

σ1
[Ri(λ)]−

12ln(χ)2γ2δ2σ2$2
1

σ1
[Ri(λ)]

2. (52)

Set 1: Now, we will derive many different solutions by taking Ri from Equation (7) to
Equation (43), respectively.

(Family 1) When β2 − 4αγ < 0, and γ 6= 0,
The shock solution is obtain as

Ω1(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
+

√
−S
2γ

tanχ

(√
−S
2

λ

))

+ γ

(
− β

2γ
+

√
−S
2γ

tanχ

(√
−S
2

λ

))2]
.

(53)
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The singular solution is gain as

Ω2(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
−
√
−S
2γ

cotχ

(√
−S
2

λ

))

+ γ

(
− β

2γ
−
√
−S
2γ

cotχ

(√
−S
2

λ

))2]
.

(54)

The mixed complex solitary-shock solution is taken as

Ω3(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
+

√
−S
2γ

(
tanχ

(√
−Sλ

)
±
√

mn secχ

(√
−Sλ

)))
+ γ

(
− β

2γ
+

√
−S
2γ

(
tanχ

(√
−Sλ

)
±
√

mn secχ

(√
−Sλ

)))2]
.

(55)

The mixed singular solution takes the appearance of

Ω4(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
+

√
−S
2γ

(
cotχ

(√
−Sλ

)
±
√

mn cscχ

(√
−Sλ

)))
+ γ

(
− β

2γ
+

√
−S
2γ

(
cotχ

(√
−Sλ

)
±
√

mn cscχ

(√
−Sλ

)))2]
.

(56)

The mixed shock singular solution is derived from arrangement of

Ω5(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
+

√
−S
4γ

(
tanχ

(√
−S
4

λ

)

− cotχ

(√
−S
4

λ

)))
+ γ

(
− β

2γ
+

√
−S
4γ

(
tanχ

(√
−S
4

λ

)
− cotχ

(√
−S
4

λ

)))2]
.

(57)

(Family 2): When β2 − 4αγ > 0, and γ 6= 0,
Then, mixed trigonometric solutions take the following form:

Ω6(x, y, z, t) =
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
−
√
S

2γ
tanhχ

(√
S

2
λ

))

+ γ

(
− β

2γ
−
√
S

2γ
tanhχ

(√
S

2
λ

))2]
.

(58)

Ω7(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
−
√
S

2γ
cothχ

(√
S

2
λ

))

+ γ

(
− β

2γ
−
√
S

2γ
cothχ

(√
S

2
λ

))2]
.

(59)

Ω8(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sλ
)

± i
√

mnsechχ
(√

Sλ
)))

+ γ

(
− β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sλ
)
± i
√

mnsechχ
(√

Sλ
)))2]

.

(60)
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Ω9(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
+

√
S

2γ

(
− cothχ

(√
Sλ
)

±
√

mncschχ

(√
Sλ
)))

+ γ

(
− β

2γ
+

√
S

2γ

(
− cothχ

(√
Sλ
)
±
√

mncschχ

(√
Sλ
)))2]

.

(61)

Ω10(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + β

(
− β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
λ

)

+ cothχ

(√
S

4
λ

)))
+ γ

(
− β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
λ

)
+ cothχ

(√
S

4
λ

)))2]
.

(62)

(Family 3): When αγ > 0 and β = 0, we obtained results in the expression of the shock
solution,

Ω11(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(√
α

γ
tanχ(

√
αγλ)

)2]
. (63)

We take the singular solution as

Ω12(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(
−
√

α

γ
cotχ(

√
αγλ)

)2]
. (64)

The dissimilar solutions of the complex combo class is derived as

Ω13(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(√
α

γ

(
tanχ(2

√
αγλ)±

√
mn secχ(2

√
αγλ)

))2]
. (65)

Ω14(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(√
α

γ

(
− cotχ(2

√
αγλ)±

√
mn cscχ(2

√
αγλ)

))2]
. (66)

Ω15(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(
1
2

√
α

γ

(
tanχ

(√
αγ

2
λ

)
− cotχ

(√
αγ

2
λ

)))2]
. (67)

(Family 4): When αγ < 0 and β = 0, we obtain trigonometric solutions as

Ω16(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(
−
√
− α

γ
tanhχ

(√
−αγλ

))2]
. (68)

Ω17(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(
−
√
− α

γ
cothχ

(√
−αγλ

))2]
. (69)

The mixed trigonometric solutions are obtained as follows:

Ω18(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(√
− α

γ

(
− tanhχ

(
2
√
−αγλ

)
± i
√

mnsechχ

(
2
√
−αγλ

)))2]
.

(70)
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Ω19(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(√
− α

γ

(
− cothχ

(
2
√
−αγλ

)
±
√

mncschχ

(
2
√
−αγλ

)))2]
.

(71)

Ω20(x, y, z, t) = −
12γδ2ln(χ)2σ2$2

1
σ1

×
[

α + γ

(
− 1

2

√
− α

γ

(
tanhχ

(√
−αγ

2
λ

)
+ cothχ

(√
−αγ

2
λ

)))2]
.

(72)

(Family 5): When β = 0 and α = γ, the periodic and mixed periodic solutions have
been derived in the formation of the periodic and mixed-periodic family,

Ω21(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(

tanχ(αλ)

)2]
. (73)

Ω22(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− cotχ(αλ)

)2]
. (74)

Ω23(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(

tanχ(2αλ)±
√

mn secχ(2αλ)

)2]
. (75)

Ω24(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− cotχ(2αλ)±

√
mn cscχ(2αλ)

)2]
. (76)

Ω25(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(

1
2

(
tanχ

(α

2
λ
)
− cotχ

(α

2
λ
)))2]

. (77)

(Family 6): When β = 0 and γ = −α, single and mixed wave compositions are derived
in the following class:

Ω26(x, y, z, t) =
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− tanhχ(αλ)

)2]
. (78)

Ω27(x, y, z, t) =
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− cothχ(αλ)

)2]
. (79)

Ω28(x, y, z, t) =
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− tanhχ(2αλ)± i

√
mnsechχ(2αλ)

)2]
. (80)

Ω29(x, y, z, t) =
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− cotχ(2αλ)±

√
mn cschχ(2αλ)

)2]
. (81)

Ω30(x, y, z, t) =
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[

1 +
(
− 1

2

(
tanhχ

(α

2
λ
)
+ cothχ

(α

2
λ
)))2]

. (82)
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(Family 7): When β2 = 4αγ,

Ω31(x, y, z, t) = −
3δ2ln(χ)2σ2$2

1
σ1

×
[

β2 + 4γβ

(
−2α(βλ log[χ] + 2)

β2λ log[χ]

)
+ 4γ2

(
−2α(βλ log[χ] + 2)

β2λ log[χ]

)2]
.

(83)

(Family 8) and (Family 9) have constant solutions.
(Family 10): When β = α = 0

Ω34(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[(

−1
γλ log[χ]

)2]
. (84)

(Family 11): When α = 0 and β 6= 0, the mixed hyperbolic solution has been in
formation of the

Ω35(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[(
− mβ

γ(coshχ(βλ)− sinhχ(βλ) + m)

)2]
. (85)

Ω36(x, y, z, t) = −
12γ2δ2ln(χ)2σ2$2

1
σ1

×
[(
−

β(sinhχ(βλ) + coshχ(βλ))

γ(sinhχ(βλ) + coshχ(βλ) + n)

)2]
. (86)

(Family 12): When γ = pq, (q 6= 0), β = p, and α = 0

Ω37(x, y, z, t) = −
12p2qδ2ln(χ)2σ2$2

1
σ1

×
[(
− mχpλ

m− qnχpλ

)
+ q
(
− mχpλ

m− qnχpλ

)2]
. (87)

3. Graphical Explanation

In this section, we will discuss the outcomes in graphical form by using distinct values
of parameters. It is easy to bring out the complex solitary shock, periodic, singular wave,
shock wave, and singular wave. These various kinds of outputs are favorable and have
been recently discovered. As we know that waves can transfer energy from one place
to another place, the phenomena are explained graphically in this portion. By choosing
the different values of the parameter, the diagram of several declared solutions is divided
in three dimensions, two dimensions, and their related contours γ = 1, δ = 0.9, α = 1,
ω = 0.1, σ2 = −0.4, and σ1 = 0.3. Therefore, these graphical images of our latest results
should help us to examine and accurately predict the results for nonlinear wave problems
https://www.academic-agency.com/, accessed on 1 October 2022. Figures 1 and 2 display
the shock-wave solution Ω11(x, y, t) at direction cosine $1 = 0.1, 0.3, 0.6, 0.9, 1.2, 1.5 and
speed of soliton v = 0.1. If we increase the value of the direction cosine, then the amplitude
of the shock wave also increases. The amplitude of the wave varies from 1 m to 800 m
in the predicted values in this study. Figures 3 and 4 represent the mixed hyperbolic
solution wave solution at direction cosine $1 = 2, 4, 6, 8, 10, 12, and the speed of the soliton
is v = 2. The amplitude of the mixed hyperbolic wave solution Ω35(x, y, z, t) increases
as we increase the value of the direction cosine. The amplitude of the wave varies from
0.003 m to 1 m in the predicted values in this study.

https://www.academic-agency.com/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Impact of direction cosine visualized through 3D, 2D, and Contour on wave amplitude
for solution Ω11(x, y, z, t). (a) 3D visualization of wave amplitude at direction cosine $1 = 0.1.
(b) Contour visualization of wave amplitude at direction cosine $1 = 0.1. (c) 2D visualization of
wave amplitude at direction cosine $1 = 0.1. (d) 3D visualization of wave amplitude at direction
cosine $1 = 0.3. (e) Contour visualization of wave amplitude at direction cosine $1 = 0.3. (f) 2D
visualization of wave amplitude at direction cosine $1 = 0.3. (g) 3D visualization of wave amplitude
at direction cosine $1 = 0.6. (h) Contour visualization of wave amplitude at direction cosine $1 = 0.6.
(i) 2D visualization of wave amplitude at direction cosine $1 = 0.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Impact of direction cosine visualized through 3D, 2D, and Contour on wave amplitude
for solution Ω11(x, y, z, t). (a) 3D visualization of wave amplitude at direction cosine $1 = 0.9.
(b) Contour visualization of wave amplitude at direction cosine $1 = 0.9. (c) 2D visualization of
wave amplitude at direction cosine $1 = 0.9. (d) 3D visualization of wave amplitude at direction
cosine $1 = 1.2. (e) Contour visualization of wave amplitude at direction cosine $1 = 1.2. (f) 2D
visualization of wave amplitude at direction cosine $1 = 1.2. (g) 3D visualization of wave amplitude
at direction cosine $1 = 1.5. (h) Contour visualization of wave amplitude at direction cosine $1 = 1.5.
(i) 2D visualization of wave amplitude at direction cosine $1 = 1.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Impact of direction cosine visualized through 3D, 2D, and Contour on wave ampitude for
solution Ω35(x, y, z, t). (a) 3D visualization of wave amplitude at direction cosine $1 = 2. (b) Contour
visualization of wave amplitude at direction cosine $1 = 2. (c) 2D visualization of wave amplitude
at direction cosine $1 = 2. (d) 3D visualization of wave amplitude at direction cosine $1 = 4.
(e) Contour visualization of wave amplitude at direction cosine $1 = 4. (f) 2D visualization of wave
amplitude at direction cosine $1 = 4. (g) 3D visualization of wave amplitude at direction cosine
$1 = 6. (h) Contour visualization of wave amplitude at direction cosine $1 = 6. (i) 2D visualization
of wave amplitude at direction cosine $1 = 6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Impact of direction cosine visualized through 3D, 2D, and Contour on wave amplitude for
solution Ω35(x, y, z, t). (a) 3D visualization of wave amplitude at direction cosine $1 = 8. (b) Contour
visualization of wave amplitude at direction cosine $1 = 8. (c) 2D visualization of wave amplitude
at direction cosine $1 = 8. (d) 3D visualization of wave amplitude at direction cosine $1 = 10.
(e) Contour visualization of wave amplitude at direction cosine $1 = 10. (f) 2D visualization of wave
amplitude at direction cosine $1 = 10. (g) 3D visualization of wave amplitude at direction cosine
$1 = 12. (h) Contour visualization of wave amplitude at direction cosine $1 = 12. (i) 2D visualization
of wave amplitude at direction cosine $1 = 12.

Remark 1. The Figures 1 and 2 is displaying the periodic and periodic singular soliton solution
due to variation of direction cosine. Figures 3 and 4 display the anti-kink soliton solution due to
variation of direction cosine. Figures 5 and 6 present the 2-dimensional impact of direction of cosine
on the obtained solution.
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(a) (b) (c)

Figure 5. Impact of direction cosine visualized through 2D on wave amplitude for solution
Ω11(x, y, z, t) (a) 2D visualization of wave amplitude at t = 1. (b) 2D visualization of wave am-
plitude at t = 20. (c) 2D visualization of wave amplitude at t = 50.

(a) (b) (c)

Figure 6. Impact of direction cosine visualized through 2D on wave amplitude for solution
Ω35(x, y, z, t). (a) 2D visualization of wave amplitude at t = 1. (b) 2D visualization of wave am-
plitude at t = 20. (c) 2D visualization of wave amplitude at t =50.

Physical aspects: A wave is an energy-carrying disturbance in a medium that does
not include any net particle motion. According to the laws of physics, the amplitude
is directly proportional to the energy density. Thus, the obtained solutions predict that
the liquid with gas bubbles has more capacity to carry the high amount of energy and
also can transfer it more rapidly and smoothly. The results of solution Ω11(x, y, z, t) can
be applied to macro-level energy consumption systems and Ω35(x, y, z, t) to micro-level
energy consumption systems. The direction cosine controls the capacity and transmission
of energy density in liquid with gas bubbles. The use of these results on an industry level
is more beneficial to us and improves our work. Physicists and chemists can obtain their
required outcomes from these results by using the influence of direction cosine on the wave
amplitude. We will discuss this collectively.
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4. Modulation Instability Gain Spectrum
Linear Stability Analysis

In this part of the paper, the goal is to expand the modulation instability (MI) gain
of the steady-state solution of the executive system by the decency of the linear stability
analysis. The MI can be included in the exponential development of the small perturbation
in the stage of optical waves or the amplitude. It is remarkable within nonlinear physics .

Let us suppose a steady-state solution in order to execute a stability analysis

Ω =
√

p, (88)

where p is the initial incidence power(real constant-amplitude). Additionally, the solu-
tion (88) converts to the perturbed stationary solutions as

Ω =
√

P + σ θ(x, y, z, t), (89)

where θ is real function of x, y, z, t and the perturbation coefficient parameter is σ << 1.
The perturbed stationary solutions are put into system (1) and obtain the disturbance
equation

µ
∂2

∂x∂t
θ(x, y, z, t) + σ1

(
µ

(
∂2

∂x2 θ(x, y, z, t)
)√

P + µ2
(

∂2

∂x2 θ(x, y, z, t)
)

θ(x, y, z, t)

+µ2
(

∂

∂x
θ(x, y, z, t)

)2
)
+ σ2

(
µ

(
∂4

∂x4 θ(x, y, z, t)
)√

P + µ2
(

∂4

∂x4 θ(x, y, z, t)
)

θ(x, y, z, t)

+µ2
(

∂3

∂x3 θ(x, y, z, t)
)

∂

∂x
θ(x, y, z, t)

)
+ σ3µ

∂2

∂x2 θ(x, y, z, t) + σ4

(
µ

(
∂2

∂y2 θ(x, y, z, t)
)√

P

+µ2
(

∂2

∂y2 θ(x, y, z, t)
)

θ(x, y, z, t)
)
+ σ5µ

∂2

∂z2 θ(x, y, z, t) = 0.

(90)

After linearization, the disturbance Equation (90) can be write down as

µ
∂2

∂x∂t
θ(x, y, z, t) + σ1

(
µ

(
∂2

∂x2 θ(x, y, z, t)
))√

P + σ2

(
µ

(
∂4

∂x4 θ(x, y, z, t)
)√

P
)
+

σ3µ
∂2

∂x2 θ(x, y, z, t) + σ4

(
µ

(
∂2

∂y2 θ(x, y, z, t)
)√

P
)
+ σ5µ

∂2

∂z2 θ(x, y, z, t) = 0.
(91)

Now, we have to organize the θ(x, y, t) such that

θ(x, y, z, t) = Θeι(ax+by+cz−dt) + Ξe−ι(ax+by+cz−dt). (92)

The function (92) plugs into (91), and we obtain the system of the homogenous equation

µ Θ Md(ln(e))2a + µ Ξ Nd(ln(e))2a− σ1µ
√

PΘ Ma2(ln(e))2−

σ1µ
√

PΞ Na2(ln(e))2 + σ2µ
√

PΘ Ma4(ln(e))4 + σ2µ
√

PΞ Na4(ln(e))4−
σ3µ Θ Ma2(ln(e))2 − σ3µ Ξ Na2(ln(e))2 − σ3µ Θ Mb2(ln(e))2 − σ3µ Ξ Nb2(ln(e))2

− σ4µ
√

PΘ Mb2(ln(e))2 − σ4µ
√

PΞ Nb2(ln(e))2 = 0.

(93)

µ Θ d(ln(e))2a− σ1µ Θ a2(ln(e))2√P + σ2µ Θ a4(ln(e))4√P

− σ3µ Θ a2(ln(e))2 − σ3µ Θ b2(ln(e))2 − σ4µ Θ b2(ln(e))2√P = 0.

µ Ξ d(ln(e))2a− σ1µ Ξ a2(ln(e))2√P + σ2µ Ξ a4(ln(e))4√P−
σ3µ Ξ a2(ln(e))2 − σ3µ Ξ b2(ln(e))2 − σ4µ Ξ b2(ln(e))2√P = 0.

(94)
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The coefficient matrix of system (94) can be written as follows for Θ and Ξ:[
A 0

0 B

][
Θ

Ξ

]
=

[
0

0

]
, (95)

where

A = µ d(ln(e))2a− σ1µ a2(ln(e))2√P + σ2µ a4(ln(e))4√P− σ3µ a2(ln(e))4

− σ3µ b2(ln(e))2 − σ4µ b2(ln(e))2√P,

B = µ d(ln(e))2a− σ1µ a2(ln(e))2√P + σ2µ a4(ln(e))4√P− 2 σ3µ a2(ln(e))2

− σ3µ b2(ln(e))2 − σ4µ b2(ln(e))2√P.

(96)

The non-trivial solutions exist for the coefficient matrix (95) when the determinant
vanishes. The dispersion relation is derived by modify the determinant of the above
coefficient matrix

− 2 µ2d(ln(e))4aσ4b2
√

P + 2 σ1µ2a2(ln(e))4√Pσ3b2

+ 2 σ1µ2a2(ln(e))4Pσ4b2 − 2 σ2µ2a4(ln(e))6√Pσ3b2

− 2 σ2µ2a4(ln(e))6Pσ4b2 + 2 σ4µ2b2(ln(e))4√Pσ3a2

+ 2 σ3µ2b4(ln(e))4σ4
√

P + σ1
2µ2a4(ln(e))4P + σ2

2µ2a8(ln(e))8P

− σ3µ2a3(ln(e))6d + σ3
2µ2a2(ln(e))6b2 + σ4

2µ2b4(ln(e))4P

+ σ3µ2a4(ln(e))6σ1
√

P− σ3µ2a6(ln(e))8σ2
√

P− 2 µ2d(ln(e))4a3σ1
√

P

+ 2 µ2d(ln(e))6a5σ2
√

P− 2 µ2d(ln(e))4aσ3b2 − 2 σ1µ2a6(ln(e))6Pσ2

+ 2 σ1µ2a4(ln(e))4√Pσ3 − 2 σ2µ2a6(ln(e))6√Pσ3

+ µ2d2(ln(e))4a2 + σ3
2µ2b4(ln(e))4 + 2 σ3

2µ2a4(ln(e))6

− 2 µ2d(ln(e))4a3σ3 + 2 σ3
2µ2b2(ln(e))4a2 + σ3µ2a2(ln(e))6σ4b2

√
P = 0.

, (97)

It is well known that the generalized nonlinear wave equation in (3 + 1) dimensions with
gas bubbles is modulation-stable for any wave number a if and only if four roots d (97) are
all positive real numbers. However, it is not a simple task to obtain the roots of (97) since
we have to employ the efficient analytical formula and the related phenomena for the roots
of a fourth-order polynomial. The results of a dispersion relation (97) are developed as

d =
1
a

(
− (ln(e))2√Pa4σ2 + 1/2 (ln(e))2a2σ3 +

√
Pa2σ1 +

√
Pb2σ4 + a2σ3 + b2σ3 − 1/2

√
Ψ
)

, (98)

where

Ψ = ln(e)4a4σ3
2 − 4ln(e)2a4σ3

2 + 4 a4σ3
2. (99)

Thus, one can notice that the modulation instability of the generalized nonlinear wave
equation in (3 + 1) dimensions with gas bubbles occurs when either

√
Ψ < 0,

or
1
a
(−(ln(e))2√Pa4σ2 + 1/2 (ln(e))2a2σ3 +

√
Pa2σ1 +

√
Pb2σ4 + a2σ3 + b2σ3 − 1/2

√
Ψ < 0.
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Furthermore, the modulation instability gain spectrum MI gain can be deliberated and
modified by the maximum absolute value for the imaginary part of the wave number and
defined as

MIgain = a=(d) =
√

ln(e)4a4σ32 − 4ln(e)2a4σ32 + 4 a4σ32. (100)

The modulational gain spectrum Figure 7 ensured the stability of the considered model by
satisfying the aforementioned conditions.

Figure 7. Modulation instability gain spectrum.

5. Conclusions

This study examined the generalized (3 + 1) dimensional nonlinear liquid wave
equation with gas bubbles in a sort of solitonic theory. The new extended algebraic equation
method is used to discuss the explicit solitonic structures and modulational instability gain
spectrum developed. As a result,

• The used method generated the plane solution, the mixed-hyperbolic solution, the
periodic and mixed-periodic solutions, the mixed-trigonometric solution, the trigono-
metric solution, the shock solution, the mixed-shock singular solution, the mixed
singular solution, the complex solitary shock solution, the singular solution, and
shock-wave solutions .

• It is noticed that the energy-carrying capacity of liquid with gas bubbles and its
propagation can be increased.

• The modulational instability gain spectrum is developed and ensures the stability of
the proposed model.

• The researchers and experts can apply these results in the different fields of modern
sciences at macro and micro levels where needed. These results are also beneficial for
the industry level.
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