Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = neutral lipid trafficking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4232 KiB  
Article
Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions
by Jaime López-Alcalá, M. Carmen Soler-Vázquez, Carmen Tercero-Alcázar, Julia Sánchez-Ceinos, Rocío Guzmán-Ruiz, María M. Malagón and Ana Gordon
Int. J. Mol. Sci. 2023, 24(24), 17177; https://doi.org/10.3390/ijms242417177 - 6 Dec 2023
Cited by 4 | Viewed by 2068
Abstract
The adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, [...] Read more.
The adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, a mediator of intracellular lipid trafficking and ER–LD interaction. Although perturbations of the inter-organelle contact sites have been linked to several diseases, such as cancer, no information regarding ER–LD contact sites in dysfunctional adipocytes from the obese adipose tissue has been published to date. Herein, the ER–LD connection and Rab18 distribution at ER–LD contact sites are examined in adipocytes challenged with fibrosis and inflammatory conditions, which represent known hallmarks of the adipose tissue in obesity. Our results show that adipocytes differentiated in fibrotic conditions caused ER fragmentation, the expansion of ER–LD contact sites, and modified Rab18 dynamics. Likewise, adipocytes exposed to inflammatory conditions favored ER–LD contact, Rab18 accumulation in the ER, and Rab18 redistribution to large LDs. Finally, our studies in human adipocytes supported the suggestion that Rab18 transitions to the LD coat from the ER. Taken together, our results suggest that obesity-related pathogenic processes alter the maintenance of ER–LD interactions and interfere with Rab18 trafficking through these contact sites. Full article
(This article belongs to the Special Issue Obesity and Obesity Related Disorders)
Show Figures

Graphical abstract

15 pages, 2481 KiB  
Article
Lipophilic Fe(III)-Complex with Potent Broad-Spectrum Anticancer Activity and Ability to Overcome Pt Resistance in A2780cis Cancer Cells
by Nalin Abeydeera, Morgan Stilgenbauer, Bishnu D. Pant, Khalil Mudarmah, Thiloka M. Dassanayake, Yao-Rong Zheng and Songping D. Huang
Molecules 2023, 28(13), 4917; https://doi.org/10.3390/molecules28134917 - 22 Jun 2023
Cited by 5 | Viewed by 2166
Abstract
Although iron is essential for all forms of life, it is also potentially toxic to cells as the increased and unregulated iron uptake can catalyze the Fenton reaction to produce reactive oxygen species (ROS), leading to lipid peroxidation of membranes, oxidation of proteins, [...] Read more.
Although iron is essential for all forms of life, it is also potentially toxic to cells as the increased and unregulated iron uptake can catalyze the Fenton reaction to produce reactive oxygen species (ROS), leading to lipid peroxidation of membranes, oxidation of proteins, cleavage of DNA and even activation of apoptotic cell death pathways. We demonstrate that Fe(hinok)3 (hinok = 2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), a neutral Fe(III) complex with high lipophilicity is capable of bypassing the regulation of iron trafficking to disrupt cellular iron homeostasis; thus, harnessing remarkable anticancer activity against a panel of five different cell lines, including Pt-sensitive ovarian cancer cells (A2780; IC50 = 2.05 ± 0.90 μM or 1.20 μg/mL), Pt-resistant ovarian cancer cells (A2780cis; IC50 = 0.92 ± 0.73 μM or 0.50 μg/mL), ovarian cancer cells (SKOV-3; IC50 = 1.23 ± 0.01 μM or 0.67 μg/mL), breast cancer cells (MDA-MB-231; IC50 = 3.83 ± 0.12 μM or 2.0 μg/mL) and lung cancer cells (A549; IC50 = 1.50 ± 0.32 μM or 0.82 μg/mL). Of great significance is that Fe(hinok)3 exhibits unusual selectivity toward the normal HEK293 cells and the ability to overcome the Pt resistance in the Pt-resistant mutant ovarian cancer cells of A2780cis. Full article
(This article belongs to the Special Issue New Therapeutic Targets for Cancer)
Show Figures

Figure 1

20 pages, 1113 KiB  
Review
Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications
by Kaiwei Xu, Wen Zou, Biao Peng, Chao Guo and Xiaotong Zou
Biology 2023, 12(4), 594; https://doi.org/10.3390/biology12040594 - 13 Apr 2023
Cited by 12 | Viewed by 5792
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown [...] Read more.
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Figure 1

17 pages, 958 KiB  
Review
Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery
by Tetsuro Ishii, Eiji Warabi and Giovanni E. Mann
Antioxidants 2023, 12(2), 274; https://doi.org/10.3390/antiox12020274 - 26 Jan 2023
Cited by 10 | Viewed by 4202
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate [...] Read more.
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors. Full article
Show Figures

Graphical abstract

14 pages, 2125 KiB  
Article
CD14+-Monocytes Exposed to Apolipoprotein CIII Express Tissue Factor
by Oliviero Olivieri, Sara Gasperini, Federica Calzetti, Elisa Gardiman, Annalisa Castagna, Nicola Martinelli, Nicola Tamassia and Marco A. Cassatella
Int. J. Mol. Sci. 2023, 24(3), 2223; https://doi.org/10.3390/ijms24032223 - 22 Jan 2023
Cited by 3 | Viewed by 2351
Abstract
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor [...] Read more.
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1β and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk. Full article
Show Figures

Figure 1

18 pages, 1921 KiB  
Review
Interactions of Lipid Droplets with the Intracellular Transport Machinery
by Selma Yilmaz Dejgaard and John F. Presley
Int. J. Mol. Sci. 2021, 22(5), 2776; https://doi.org/10.3390/ijms22052776 - 9 Mar 2021
Cited by 18 | Viewed by 8185
Abstract
Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and [...] Read more.
Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes. Full article
(This article belongs to the Special Issue Intracellular Membrane Transport: Models and Machines)
Show Figures

Figure 1

17 pages, 508 KiB  
Communication
Pleiotropy as the Mechanism for Evolving Novelty: Same Signal, Different Result
by John S. Torday
Biology 2015, 4(2), 443-459; https://doi.org/10.3390/biology4020443 - 19 Jun 2015
Cited by 16 | Viewed by 7537
Abstract
In contrast to the probabilistic way of thinking about pleiotropy as the random expression of a single gene that generates two or more distinct phenotypic traits, it is actually a deterministic consequence of the evolution of complex physiology from the unicellular state. Pleiotropic [...] Read more.
In contrast to the probabilistic way of thinking about pleiotropy as the random expression of a single gene that generates two or more distinct phenotypic traits, it is actually a deterministic consequence of the evolution of complex physiology from the unicellular state. Pleiotropic novelties emerge through recombinations and permutations of cell-cell signaling exercised during reproduction based on both past and present physical and physiologic conditions, in service to the future needs of the organism for its continued survival. Functional homologies ranging from the lung to the kidney, skin, brain, thyroid and pituitary exemplify the evolutionary mechanistic strategy of pleiotropy. The power of this perspective is exemplified by the resolution of evolutionary gradualism and punctuated equilibrium in much the same way that Niels Bohr resolved the paradoxical duality of light as Complementarity. Full article
Show Figures

Figure 1

Back to TopTop