Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = neurotrophic gene vectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8944 KiB  
Article
Machine Learning-Based Virtual Screening and Molecular Modeling Reveal Potential Natural Inhibitors for Non-Small Cell Lung Cancer
by Zafer Saad Al Shehri and Faez Falah Alshehri
Crystals 2025, 15(5), 383; https://doi.org/10.3390/cryst15050383 - 22 Apr 2025
Viewed by 998
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the most typical kind of lung cancer. Chemotherapy, radiation therapy, and other traditional cancer therapies are ineffective. Advancements in understanding cancer’s molecular causes have led to targeted therapies, such as those addressing NTRK gene fusions in NSCLC. [...] Read more.
Non-Small Cell Lung Cancer (NSCLC) is the most typical kind of lung cancer. Chemotherapy, radiation therapy, and other traditional cancer therapies are ineffective. Advancements in understanding cancer’s molecular causes have led to targeted therapies, such as those addressing NTRK gene fusions in NSCLC. Several machine-learning techniques were used in our work, including k-Nearest Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB). As a result, the RF model outperformed the other studied machine-learning methods, achieving an astonishing 93.12% accuracy for both training as well as testing datasets, and it was employed to screen 9000 chemicals, resulting in the discovery of 65 putative NTRK potential inhibitors. The active sites of NTRK proteins were then docked with these 65 active chemicals. Our findings show that Gancaonin X, 5-hydroxy-2-(4-methoxyphenyl)-8,8-dimethyl-2,3-dihydropyrano[2,3-h]chromen-4-one, (2S)-7-[[(2R)-3,3-dimethyloxiran-2-yl]methoxy]-5-hydroxy-2-phenyl-2,3-dihydrochromen-4-one, (2S)-5-hydroxy-2-(4-methoxyphenyl)-8,8-dimethyl-2,3-dihydropyrano[2,3-h]chromen-4-one, and methyl 2-(methylamino)-5-[(3S)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl]benzoate establish strong interactions inside the binding region of NTRK, as a result of which stable complexes are formed. This study employs 100 ns molecular dynamics simulations to investigate the dynamic behavior of phytochemical-NTRK complexes, revealing stable interactions through RMSD, RMSF, Rg, and SASA analyses. The detailed examination of protein–ligand interactions provides crucial atomic-level insights, enhancing our understanding of potential neurotrophic receptor kinase-targeted therapeutic strategies. This highlights their significant ability as NTRK antagonists, giving novel treatment options for NSCLC therapy. To summarize, the application of machine learning in combination with virtual screening in this study not only can discover new NSCLC therapeutics but also highlight new computer approaches in the field of drug discovery. Full article
Show Figures

Figure 1

18 pages, 3326 KiB  
Article
Efficient Production of Recombinant Human Brain-Derived Neurotrophic Factor in Escherichia coli Through the Engineering of Its Pro-Region
by Elisa Spaccapaniccia, Tiziano Cazzorla, Daniela Rossetti, Lucio De Simone, Maria Irene Antonangeli, Andrea Antonosante, Francesca Galli, Franca Cattani, Mariano Maffei and Franck Martin
Int. J. Mol. Sci. 2024, 25(24), 13425; https://doi.org/10.3390/ijms252413425 - 14 Dec 2024
Viewed by 1571
Abstract
Thus far, no manufacturing process able to support industrialization has been reported for the recombinant human brain-derived neurotrophic factor (rhBDNF). Here, we described the setup of a new protocol for its production in Escherichia coli (E. coli) and its purification to [...] Read more.
Thus far, no manufacturing process able to support industrialization has been reported for the recombinant human brain-derived neurotrophic factor (rhBDNF). Here, we described the setup of a new protocol for its production in Escherichia coli (E. coli) and its purification to homogeneity. A synthetic gene, codifying for the neurotrophin precursor, was inserted into an E. coli expression vector and transformed into BL21 (DE3) strain. The recombinant protein accumulates, at high yields, into inclusion bodies. With the developed strategy, more than 50% of the precursor can be refolded. The protein is successively digested by trypsin and the rhBDNF mature form is finally purified by two additional chromatographic steps If the wild-type precursor can be efficiently obtained by the proposed methodology, its pro-peptide remotion, through enzymatic digestion, is however problematic. To circumvent this difficulty, the precursor hinge region, containing the natural furin recognition site, was engineered to be more specifically cleaved by trypsin. Notwithstanding the substitution of three residues in the pro-region carboxyterminal, the precursor correctly refolds and is efficiently cleaved to generate a biologically active mature rhBDNF. This efficient high-yield process fills the current need of a scalable protocol to produce GMP-grade material and unlocks the rhBDNF employment in future clinical investigations. Full article
(This article belongs to the Special Issue Recombinant Proteins, Protein Folding and Drug Discovery)
Show Figures

Figure 1

14 pages, 501 KiB  
Review
Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents
by Kenneth Lundstrom
Viruses 2024, 16(11), 1762; https://doi.org/10.3390/v16111762 - 12 Nov 2024
Cited by 3 | Viewed by 2260
Abstract
Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications [...] Read more.
Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications for different cancers. Point mutations in the non-structural alphaviral replicase genes have generated enhanced transgene expression and created temperature-sensitive expression vectors. The recently engineered trans-amplifying RNA system can provide higher translational efficiency and eliminate interference with cellular translation. The self-replicating feature of alphaviruses has provided the advantage of extremely high transgene expression of vaccine-related antigens and therapeutic anti-tumor and immunostimulatory genes, which has also permitted significantly reduced doses for prophylactic and therapeutic applications, potentially reducing adverse events. Furthermore, alphaviruses have shown favorable flexibility as they can be delivered as recombinant viral particles, RNA replicons, or DNA-replicon-based plasmids. In the context of infectious diseases, robust immune responses against the surface proteins of target agents have been observed along with protection against challenges with lethal doses of infectious agents in rodents and primates. Similarly, the expression of anti-tumor genes and immunostimulatory genes from alphavirus vectors has provided tumor growth inhibition, tumor regression, and cures in animal cancer models. Moreover, protection against tumor challenges has been observed. In clinical settings, patient benefits have been reported. Alphaviruses have also been considered for the treatment of neurological disorders due to their neurotrophic preference. Full article
(This article belongs to the Special Issue Self-Replicating RNA Viruses)
Show Figures

Figure 1

31 pages, 895 KiB  
Review
Adeno-Associated Viral Vectors in the Treatment of Epilepsy
by Aysilu I. Mullagulova, Elena E. Timechko, Valeriya V. Solovyeva, Alexey M. Yakimov, Ahmad Ibrahim, Diana D. Dmitrenko, Albert A. Sufianov, Galina Z. Sufianova and Albert A. Rizvanov
Int. J. Mol. Sci. 2024, 25(22), 12081; https://doi.org/10.3390/ijms252212081 - 11 Nov 2024
Cited by 2 | Viewed by 2321
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review [...] Read more.
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

21 pages, 3127 KiB  
Review
Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy
by Hoda Shamsnajafabadi, Robert E. MacLaren and Jasmina Cehajic-Kapetanovic
Cells 2023, 12(15), 2013; https://doi.org/10.3390/cells12152013 - 7 Aug 2023
Cited by 13 | Viewed by 4720
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense [...] Read more.
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer. Full article
(This article belongs to the Special Issue Retinal Cell Biology in Health and Disease)
Show Figures

Figure 1

23 pages, 30873 KiB  
Article
Autologous Genetically Enriched Leucoconcentrate in the Preventive and Acute Phases of Stroke Treatment in a Mini-Pig Model
by Zufar Safiullov, Andrei Izmailov, Mikhail Sokolov, Vage Markosyan, Grayr Kundakchan, Ravil Garifulin, Maksim Shmarov, Boris Naroditsky, Denis Logunov and Rustem Islamov
Pharmaceutics 2022, 14(10), 2209; https://doi.org/10.3390/pharmaceutics14102209 - 17 Oct 2022
Cited by 5 | Viewed by 2372
Abstract
The natural limitations of regeneration in the CNS are major problems for the treatment of neurological disorders, including ischaemic brain strokes. Among the approaches being actively developed to inhibit post-ischaemic negative consequences is the delivery of therapeutic genes encoding neuroprotective molecules to the [...] Read more.
The natural limitations of regeneration in the CNS are major problems for the treatment of neurological disorders, including ischaemic brain strokes. Among the approaches being actively developed to inhibit post-ischaemic negative consequences is the delivery of therapeutic genes encoding neuroprotective molecules to the brain. Unfortunately, there are currently no proven and available medicines that contain recombinant human genes for the treatment of ischaemic cerebral stroke. Of particular interest is the development of treatments for patients at risk of ischaemic stroke. In the present study, we propose a proof of concept for the use of an autologous, genetically enriched leucoconcentrate temporally secreting recombinant vascular endothelial growth factor (VEGF), glial-cell-line-derived neurotrophic factor (GDNF) and the neural cell adhesion molecule (NCAM) for the treatment of stroke. In a mini-pig ischaemic stroke model, genetically enriched leucoconcentrate was infused 4 h after surgery (gene therapy in acute phase) or 2 days before stroke modelling (preventive gene therapy). On day 21, after the stroke modelling, the post-ischaemic brain recovery was examined by morphologic and immunofluorescence analysis. The benefits of treating a stroke with genetically enriched leucoconcentrate both for preventive purposes and in the acute phase were confirmed by an improved performance in behavioural tests, higher preservation of brain tissue and positive post-ischaemic brain remodelling in the peri-infarct area. These results suggest that the employment of autologous leucocytes enabling the temporary production of the recombinant therapeutic molecules to correct the pathological process in the CNS may be one of the breakthrough approaches in gene therapy. Full article
(This article belongs to the Special Issue State-of-Art in mRNA Therapeutics and Gene Delivery)
Show Figures

Figure 1

20 pages, 13004 KiB  
Article
Overexpression of Brain- and Glial Cell Line-Derived Neurotrophic Factors Is Neuroprotective in an Animal Model of Acute Hypobaric Hypoxia
by Maria S. Gavrish, Mark D. Urazov, Tatiana A. Mishchenko, Victoria D. Turubanova, Ekaterina A. Epifanova, Victoria G. Krut’, Alexey A. Babaev, Maria V. Vedunova and Elena V. Mitroshina
Int. J. Mol. Sci. 2022, 23(17), 9733; https://doi.org/10.3390/ijms23179733 - 27 Aug 2022
Cited by 5 | Viewed by 2608
Abstract
Currently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain’s resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase [...] Read more.
Currently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain’s resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase in the level of these neurotrophic factors in brain tissues using genetic engineering methods on the resistance of laboratory animals to hypoxia may pave the way for the future clinical use of neurotrophic factors BDNF and GDNF in the treatment of hypoxic damage. This study aimed to evaluate the antihypoxic and neuroprotective properties of BDNF and GDNF expression level increase using adeno-associated viral vectors in modeling hypoxia in vivo. To achieve overexpression of neurotrophic factors in the central nervous system’s cells, viral constructs were injected into the brain ventricles of newborn male C57Bl6 (P0) mice. Acute hypobaric hypoxia was modeled on the 30th day after the injection of viral vectors. Survival, cognitive, and mnestic functions in the late post-hypoxic period were tested. Evaluation of growth and weight characteristics and the neurological status of animals showed that the overexpression of neurotrophic factors does not affect the development of mice. It was found that the use of adeno-associated viral vectors increased the survival rate of male mice under hypoxic conditions. The present study indicates that the neurotrophic factors’ overexpression, induced by the specially developed viral constructs carrying the BDNF and GDNF genes, is a prospective neuroprotection method, increasing the survival rate of animals after hypoxic injury. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2022)
Show Figures

Figure 1

22 pages, 5275 KiB  
Article
Characterization and Optimization of Chitosan-Coated Polybutylcyanoacrylate Nanoparticles for the Transfection-Guided Neural Differentiation of Mouse Induced Pluripotent Stem Cells
by Martin Hsiu-Chu Lin, Ping-Shan Lai, Li-Ching Chang, Wei-Chao Huang, Ming-Hsueh Lee, Kuo-Tai Chen, Chiu-Yen Chung and Jen-Tsung Yang
Int. J. Mol. Sci. 2021, 22(16), 8741; https://doi.org/10.3390/ijms22168741 - 14 Aug 2021
Cited by 5 | Viewed by 3659
Abstract
Gene transfection is a valuable tool for analyzing gene regulation and function, and providing an avenue for the genetic engineering of cells for therapeutic purposes. Though efficient, the potential concerns over viral vectors for gene transfection has led to research in non-viral alternatives. [...] Read more.
Gene transfection is a valuable tool for analyzing gene regulation and function, and providing an avenue for the genetic engineering of cells for therapeutic purposes. Though efficient, the potential concerns over viral vectors for gene transfection has led to research in non-viral alternatives. Cationic polyplexes such as those synthesized from chitosan offer distinct advantages such as enhanced polyplex stability, cellular uptake, endo-lysosomal escape, and release, but are limited by the poor solubility and viscosity of chitosan. In this study, the easily synthesized biocompatible and biodegradable polymeric polysorbate 80 polybutylcyanoacrylate nanoparticles (PS80 PBCA NP) are utilized as the backbone for surface modification with chitosan, in order to address the synthetic issues faced when using chitosan alone as a carrier. Plasmid DNA (pDNA) containing the brain-derived neurotrophic factor (BDNF) gene coupled to a hypoxia-responsive element and the cytomegalovirus promotor gene was selected as the genetic cargo for the in vitro transfection-guided neural-lineage specification of mouse induced pluripotent stem cells (iPSCs), which were assessed by immunofluorescence staining. The chitosan-coated PS80 PBCA NP/BDNF pDNA polyplex measured 163.8 ± 1.8 nm and zeta potential measured −34.8 ± 1.8 mV with 0.01% (w/v) high molecular weight chitosan (HMWC); the pDNA loading efficiency reached 90% at a nanoparticle to pDNA weight ratio of 15, which also corresponded to enhanced polyplex stability on the DNA stability assay. The HMWC-PS80 PBCA NP/BDNF pDNA polyplex was non-toxic to mouse iPSCs for up to 80 μg/mL (weight ratio = 40) and enhanced the expression of BDNF when compared with PS80 PBCA NP/BDNF pDNA polyplex. Evidence for neural-lineage specification of mouse iPSCs was observed by an increased expression of nestin, neurofilament heavy polypeptide, and beta III tubulin, and the effects appeared superior when transfection was performed with the chitosan-coated formulation. This study illustrates the versatility of the PS80 PBCA NP and that surface decoration with chitosan enabled this delivery platform to be used for the transfection-guided differentiation of mouse iPSCs. Full article
(This article belongs to the Special Issue Frontiers in Polymer-Based Nanomaterials)
Show Figures

Figure 1

24 pages, 784 KiB  
Review
Use of Gene Therapy in Retinal Ganglion Cell Neuroprotection: Current Concepts and Future Directions
by Jess Rhee and Kendrick Co Shih
Biomolecules 2021, 11(4), 581; https://doi.org/10.3390/biom11040581 - 15 Apr 2021
Cited by 21 | Viewed by 5215
Abstract
We systematically reviewed published translational research on gene-based therapy for retinal ganglion cell (RGC) neuroprotection. A search was conducted on Entrez PubMed on 23 December 2020 using the keywords “gene therapy”, “retinal ganglion cell” and “neuroprotection”. The initial search yielded 82 relevant articles. [...] Read more.
We systematically reviewed published translational research on gene-based therapy for retinal ganglion cell (RGC) neuroprotection. A search was conducted on Entrez PubMed on 23 December 2020 using the keywords “gene therapy”, “retinal ganglion cell” and “neuroprotection”. The initial search yielded 82 relevant articles. After restricting publications to those with full text available and in the English language, and then curating for only original articles on gene-based therapy, the final yield was 18 relevant articles. From the 18 papers, 17 of the papers utilized an adeno-associated viral (AAV) vector for gene therapy encoding specific genes of interest. Specifically, six of the studies utilized an AAV vector encoding brain-derived neurotrophic factor (BDNF), two of the studies utilized an AAV vector encoding erythropoietin (EPO), the remaining 10 papers utilized AAV vectors encoding different genes and one microRNA study. Although the literature shows promising results in both in vivo and in vitro models, there is still a significant way to go before gene-based therapy for RGC neuroprotection can proceed to clinical trials. Namely, the models of injury in many of the studies were more acute in nature, unlike the more progressive and neurodegenerative pathophysiology of diseases, such as glaucoma. The regulation of gene expression is also highly unexplored despite the use of AAV vectors in the majority of the studies reviewed. It is also expected that with the successful launch of messenger ribonucleic acid (mRNA)-based vaccinations in 2020, we will see a shift towards this technology for gene-based therapy in glaucoma neuroprotection. Full article
(This article belongs to the Special Issue Cellular Therapies for Glaucoma)
Show Figures

Figure 1

18 pages, 12583 KiB  
Review
Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases
by Youngpyo Nam, Gyeong Joon Moon and Sang Ryong Kim
Int. J. Mol. Sci. 2021, 22(6), 3064; https://doi.org/10.3390/ijms22063064 - 17 Mar 2021
Cited by 6 | Viewed by 3537
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of [...] Read more.
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD. Full article
(This article belongs to the Special Issue Neuroglial Cross-Talk in Neuroprotection and Plasticity)
Show Figures

Figure 1

18 pages, 1138 KiB  
Review
Future Prospects of Gene Therapy for Friedreich’s Ataxia
by Gabriel Ocana-Santero, Javier Díaz-Nido and Saúl Herranz-Martín
Int. J. Mol. Sci. 2021, 22(4), 1815; https://doi.org/10.3390/ijms22041815 - 11 Feb 2021
Cited by 39 | Viewed by 8442
Abstract
Friedreich’s ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased [...] Read more.
Friedreich’s ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich’s ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich’s ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich’s ataxia, addressing the main challenges and the most feasible solutions for them. Full article
(This article belongs to the Special Issue Gene Therapy for Neurodegenerative Disease)
Show Figures

Figure 1

23 pages, 2904 KiB  
Article
Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment
by Rustem Islamov, Farid Bashirov, Filip Fadeev, Roman Shevchenko, Andrei Izmailov, Vage Markosyan, Mikhail Sokolov, Maksim Kuznetsov, Maria Davleeva, Ravil Garifulin, Ilnur Salafutdinov, Leniz Nurullin, Yuriy Chelyshev and Igor Lavrov
Int. J. Mol. Sci. 2020, 21(23), 8896; https://doi.org/10.3390/ijms21238896 - 24 Nov 2020
Cited by 22 | Viewed by 6654
Abstract
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of [...] Read more.
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 18743 KiB  
Article
Preventive Triple Gene Therapy Reduces the Negative Consequences of Ischemia-Induced Brain Injury after Modelling Stroke in a Rat
by Vage Markosyan, Zufar Safiullov, Andrei Izmailov, Filip Fadeev, Mikhail Sokolov, Maksim Kuznetsov, Dmitry Trofimov, Evgeny Kim, Grayr Kundakchyan, Airat Gibadullin, Ilnur Salafutdinov, Leniz Nurullin, Farid Bashirov and Rustem Islamov
Int. J. Mol. Sci. 2020, 21(18), 6858; https://doi.org/10.3390/ijms21186858 - 18 Sep 2020
Cited by 18 | Viewed by 4439
Abstract
Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may [...] Read more.
Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may significantly reduce the negative consequences of ischemia-induced brain injury. In the present study, we suggest the approach of preventive gene therapy for stroke. Adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) or gene engineered umbilical cord blood mononuclear cells (UCB-MC) overexpressing recombinant VEGF, GDNF, and NCAM were intrathecally injected before distal occlusion of the middle cerebral artery in rats. Post-ischemic brain recovery was investigated 21 days after stroke modelling. Morphometric and immunofluorescent analysis revealed a reduction of infarction volume accompanied with a lower number of apoptotic cells and decreased expression of Hsp70 in the peri-infarct region in gene-treated animals. The lower immunopositive areas for astrocytes and microglial cells markers, higher number of oligodendrocytes and increased expression of synaptic proteins suggest the inhibition of astrogliosis, supporting the corresponding myelination and functional recovery of neurons in animals receiving preventive gene therapy. In this study, for the first time, we provide evidence of the beneficial effects of preventive triple gene therapy by an adenoviral- or UCB-MC-mediated intrathecal simultaneous delivery combination of vegf165, gdnf, and ncam1 on the preservation and recovery of the brain in rats with subsequent modelling of stroke. Full article
(This article belongs to the Special Issue Neuroprotection: Rescue from Neuronal Death in the Brain)
Show Figures

Figure 1

15 pages, 1861 KiB  
Article
Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma
by Anna Wójcik-Gryciuk, Olga Gajewska-Woźniak, Katarzyna Kordecka, Paweł M. Boguszewski, Wioletta Waleszczyk and Małgorzata Skup
Int. J. Mol. Sci. 2020, 21(17), 6262; https://doi.org/10.3390/ijms21176262 - 29 Aug 2020
Cited by 48 | Viewed by 4550
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt [...] Read more.
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2020)
Show Figures

Figure 1

25 pages, 7030 KiB  
Article
AAV-Syn-BDNF-EGFP Virus Construct Exerts Neuroprotective Action on the Hippocampal Neural Network during Hypoxia In Vitro
by Elena V. Mitroshina, Tatiana A. Mishchenko, Alexandra V. Usenko, Ekaterina A. Epifanova, Roman S. Yarkov, Maria S. Gavrish, Alexey A. Babaev and Maria V. Vedunova
Int. J. Mol. Sci. 2018, 19(8), 2295; https://doi.org/10.3390/ijms19082295 - 5 Aug 2018
Cited by 22 | Viewed by 5851
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the key signaling molecules that supports the viability of neural cells in various brain pathologies, and can be considered a potential therapeutic agent. However, several methodological difficulties, such as overcoming the blood–brain barrier and the short [...] Read more.
Brain-derived neurotrophic factor (BDNF) is one of the key signaling molecules that supports the viability of neural cells in various brain pathologies, and can be considered a potential therapeutic agent. However, several methodological difficulties, such as overcoming the blood–brain barrier and the short half-life period, challenge the potential use of BDNF in clinical practice. Gene therapy could overcome these limitations. Investigating the influence of viral vectors on the neural network level is of particular interest because viral overexpression affects different aspects of cell metabolism and interactions between neurons. The present work aimed to investigate the influence of the adeno-associated virus (AAV)-Syn-BDNF-EGFP virus construct on neural network activity parameters in an acute hypobaric hypoxia model in vitro. Materials and methods. An adeno-associated virus vector carrying the BDNF gene was constructed using the following plasmids: AAV-Syn-EGFP, pDP5, DJvector, and pHelper. The developed virus vector was then tested on primary hippocampal cultures obtained from C57BL/6 mouse embryos (E18). Acute hypobaric hypoxia was induced on day 21 in vitro. Spontaneous bioelectrical and calcium activity of neural networks in primary cultures and viability tests were analysed during normoxia and during the posthypoxic period. Results. BDNF overexpression by AAV-Syn-BDNF-EGFP does not affect cell viability or the main parameters of spontaneous bioelectrical activity in normoxia. Application of the developed virus construct partially eliminates the negative hypoxic consequences by preserving cell viability and maintaining spontaneous bioelectrical activity in the cultures. Moreover, the internal functional structure, including the activation pattern of network bursts, the number of hubs, and the number of connections within network elements, is also partially preserved. BDNF overexpression prevents a decrease in the number of cells exhibiting calcium activity and maintains the frequency of calcium oscillations. Conclusion. This study revealed the pronounced antihypoxic and neuroprotective effects of AAV-Syn-BDNF-EGFP virus transduction in an acute normobaric hypoxia model. Full article
(This article belongs to the Special Issue Neuron Cell Death)
Show Figures

Graphical abstract

Back to TopTop