Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = neuroblastoma-rat sarcoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1562 KiB  
Article
A Cross-Sectional Exploratory Study of Rat Sarcoid (Ras) Activation in Women with and Without Polycystic Ovary Syndrome
by Sara Anjum Niinuma, Haniya Habib, Ashleigh Suzu-Nishio Takemoto, Priya Das, Thozhukat Sathyapalan, Stephen L. Atkin and Alexandra E. Butler
Cells 2025, 14(5), 377; https://doi.org/10.3390/cells14050377 - 5 Mar 2025
Viewed by 1229
Abstract
Objective: Rat sarcoma (Ras) proteins, Kirsten, Harvey, and Neuroblastoma rat sarcoma viral oncogene homolog (KRAS, HRAS, and NRAS, respectively), are a family of GTPases, which are key regulators of cellular growth, differentiation, and apoptosis through signal transduction pathways modulated by growth factors [...] Read more.
Objective: Rat sarcoma (Ras) proteins, Kirsten, Harvey, and Neuroblastoma rat sarcoma viral oncogene homolog (KRAS, HRAS, and NRAS, respectively), are a family of GTPases, which are key regulators of cellular growth, differentiation, and apoptosis through signal transduction pathways modulated by growth factors that have been recognized to be dysregulated in PCOS. This study explores Ras signaling proteins and growth factor-related proteins in polycystic ovary syndrome (PCOS). Methods: In a well-validated PCOS database of 147 PCOS and 97 control women, plasma was batch analyzed using Somascan proteomic analysis for circulating KRas, Ras GTPase-activating protein-1 (RASA1), and 45 growth factor-related proteins. The cohort was subsequently stratified for BMI (body mass index), testosterone, and insulin resistance (HOMA-IR) for subset analysis. Results: Circulating KRas, and RASA1 did not differ between PCOS and control women (p > 0.05). EGF1, EGFR, and EGFRvIII were decreased in PCOS (p = 0.04, p = 0.04 and p < 0.001, respectively). FGF8, FGF9, and FGF17 were increased in PCOS (p = 0.02, p = 0.03 and p = 0.04, respectively), and FGFR1 was decreased in PCOS (p < 0.001). VEGF-D (p < 0.001), IGF1 (p < 0.001), IGF-1sR (p = 0.02), and PDGFRA (p < 0.001) were decreased in PCOS compared to controls. After stratifying for BMI ≤ 29.9 kg/m2, EGFR FGF8, FGFR1 VEGF-D, IGF1, and IGF-1sR differed (p < 0.05) though EGF1, EGFRvIII, FGF8, FGFR1, and VEGF-D no longer differed; after subsequently stratifying for HOMA-IR, only FGFR1, VEGF-D, IGF1, and IGF-1sR differed between groups (p < 0.05). Conclusions: Several growth factors that activate Ras differ between women with and without PCOS, and when stratified for BMI and HOMA-IR, only FGFR1, VEGF-D, IGF1, and IGF-1sR differed; these appear to be inherent features of the pathophysiology of PCOS. Full article
(This article belongs to the Special Issue Ras Family of Genes and Proteins: Structure, Function and Regulation)
Show Figures

Graphical abstract

15 pages, 2192 KiB  
Communication
NRAS Mutations May Be Involved in the Pathogenesis of Cutaneous Rosai Dorfman Disease: A Pilot Study
by Kuan-Jou Wu, Shu-Hao Li, Jia-Bin Liao, Chien-Chun Chiou, Chieh-Shan Wu and Chien-Chin Chen
Biology 2021, 10(5), 396; https://doi.org/10.3390/biology10050396 - 2 May 2021
Cited by 15 | Viewed by 4211
Abstract
Background: Purely cutaneous Rosai-Dorfman disease (RDD) is a rare histiocytic proliferative disorder limited to the skin. To date, its pathogenesis remains unclear. Owing to recent findings of specific mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in histiocytic proliferative disorders, it [...] Read more.
Background: Purely cutaneous Rosai-Dorfman disease (RDD) is a rare histiocytic proliferative disorder limited to the skin. To date, its pathogenesis remains unclear. Owing to recent findings of specific mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in histiocytic proliferative disorders, it provides a novel perspective on the pathomechanism of cutaneous RDD. We aim to investigate the genomic mutations in MAPK/ERK pathway in cutaneous RDD. Methods: We retrospectively recruited all cases of cutaneous RDD from two hospitals in Taiwan from January 2010 to March 2020 with the clinicopathologic features, immunohistochemistry, and treatment. Mutations of neuroblastoma RAS viral oncogene homolog (NRAS), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS), and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) in MAPK/ERK pathway were investigated by the highly sensitive polymerase chain reaction with Sanger sequencing. Results: Seven patients with cutaneous RDD were recruited with nine biopsy specimens. The median age was 46 years (range: 17–62 years). Four of seven patients (57.1%) received tumor excision, while the other three chose oral and/or topical or intralesional steroids. NRAS mutation was detected in 4 of 7 cases (4/7; 51.7%), and NRAS A146T was the most common mutant point (n = 4/7), followed by NRAS G13S (n = 2/7). There is no KRAS or BRAF mutation detected. Conclusions: We report the NRAS mutation is common in cutaneous RDD, and NRAS A146T was the most frequent mutation in this cohort. Mutations in the NRAS gene can activate the RAS/MAPK signaling and have been reported to be associated with various cancers. It indicates that NRAS mutation in MAPK/ERK pathway may involve the pathogenesis of cutaneous RDD. Full article
(This article belongs to the Special Issue Cutaneous Neoplasms with Uncertain Biological Potential)
Show Figures

Figure 1

17 pages, 2467 KiB  
Article
Targeted Inhibition of the NUP98-NSD1 Fusion Oncogene in Acute Myeloid Leukemia
by Sagarajit Mohanty, Nidhi Jyotsana, Amit Sharma, Arnold Kloos, Razif Gabdoulline, Basem Othman, Courteney K. Lai, Renate Schottmann, Madhvi Mandhania, Johannes Schmoellerl, Florian Grebien, Euan Ramsay, Anitha Thomas, Hans-Peter Vornlocher, Arnold Ganser, Felicitas Thol and Michael Heuser
Cancers 2020, 12(10), 2766; https://doi.org/10.3390/cancers12102766 - 26 Sep 2020
Cited by 33 | Viewed by 6346
Abstract
NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the [...] Read more.
NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the cooperative potential of the fusion and its associated Neuroblastoma rat sarcoma (NRAS) mutation. By constitutively expressing NUP98-NSD1 and NRASG12D in a syngeneic mouse model and using a patient-derived xenograft (PDX) model from a NUP98-NSD1-positive AML patient, we evaluated the functional role of these genes and tested a novel siRNA formulation that inhibits the oncogenic driver NUP98-NSD1. NUP98-NSD1 transformed murine bone marrow (BM) cells in vitro and induced AML in vivo. While NRASG12D expression was insufficient to transform cells alone, co-expression of NUP98-NSD1 and NRASG12D enhanced the leukemogenicity of NUP98-NSD1. We developed a NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of the PDX mice. Our study demonstrates that mutated NRAS cooperates with NUP98-NSD1 and shows that direct targeting of the fusion can be exploited as a novel treatment strategy in NUP98-NSD1-positive AML patients. Full article
Show Figures

Figure 1

19 pages, 2483 KiB  
Review
Decoding the Role of CD271 in Melanoma
by Anna Vidal and Torben Redmer
Cancers 2020, 12(9), 2460; https://doi.org/10.3390/cancers12092460 - 31 Aug 2020
Cited by 21 | Viewed by 6339
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations [...] Read more.
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state. Full article
(This article belongs to the Special Issue Cellular Differentiation in Melanoma Development)
Show Figures

Graphical abstract

24 pages, 3555 KiB  
Article
Selective Suppression of Cell Growth and Programmed Cell Death-Ligand 1 Expression in HT1080 Fibrosarcoma Cells by Low Molecular Weight Fucoidan Extract
by Kiichiro Teruya, Yoshihiro Kusumoto, Hiroshi Eto, Noboru Nakamichi and Sanetaka Shirahata
Mar. Drugs 2019, 17(7), 421; https://doi.org/10.3390/md17070421 - 19 Jul 2019
Cited by 17 | Viewed by 5819
Abstract
Low molecular weight fucoidan extract (LMF), prepared by an abalone glycosidase digestion of a crude fucoidan extracted from Cladosiphon novae-caledoniae Kylin, exhibits various biological activities, including anticancer effect. Various cancers express programmed cell death-ligand 1 (PD-L1), which is known to play a significant [...] Read more.
Low molecular weight fucoidan extract (LMF), prepared by an abalone glycosidase digestion of a crude fucoidan extracted from Cladosiphon novae-caledoniae Kylin, exhibits various biological activities, including anticancer effect. Various cancers express programmed cell death-ligand 1 (PD-L1), which is known to play a significant role in evasion of the host immune surveillance system. PD-L1 is also expressed in many types of normal cells for self-protection. Previous research has revealed that selective inhibition of PD-L1 expressed in cancer cells is critical for successful cancer eradication. In the present study, we analyzed whether LMF could regulate PD-L1 expression in HT1080 fibrosarcoma cells. Our results demonstrated that LMF suppressed PD-L1/PD-L2 expression and the growth of HT1080 cancer cells and had no effect on the growth of normal TIG-1 cells. Thus, LMF differentially regulates PD-L1 expression in normal and cancer cells and could serve as an alternative complementary agent for treatment of cancers with high PD-L1 expression. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Graphical abstract

19 pages, 8260 KiB  
Review
Naturally Occurring Canine Melanoma as a Predictive Comparative Oncology Model for Human Mucosal and Other Triple Wild-Type Melanomas
by Belen Hernandez, Hibret A. Adissu, Bih-Rong Wei, Helen T. Michael, Glenn Merlino and R. Mark Simpson
Int. J. Mol. Sci. 2018, 19(2), 394; https://doi.org/10.3390/ijms19020394 - 30 Jan 2018
Cited by 98 | Viewed by 10700
Abstract
Melanoma remains mostly an untreatable fatal disease despite advances in decoding cancer genomics and developing new therapeutic modalities. Progress in patient care would benefit from additional predictive models germane for human disease mechanisms, tumor heterogeneity, and therapeutic responses. Toward this aim, this review [...] Read more.
Melanoma remains mostly an untreatable fatal disease despite advances in decoding cancer genomics and developing new therapeutic modalities. Progress in patient care would benefit from additional predictive models germane for human disease mechanisms, tumor heterogeneity, and therapeutic responses. Toward this aim, this review documents comparative aspects of human and naturally occurring canine melanomas. Clinical presentation, pathology, therapies, and genetic alterations are highlighted in the context of current basic and translational research in comparative oncology. Somewhat distinct from sun exposure-related human cutaneous melanomas, there is growing evidence that a variety of gene copy number alterations and protein structure/function mutations play roles in canine melanomas, in circumstances more analogous to human mucosal melanomas and to some extent other melanomas with murine sarcoma viral oncogene homolog B (BRAF), Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog (NRAS), and neurofibromin 1 tumor suppressor NF1 triple wild-type genotype. Gaps in canine genome annotation, as well as an insufficient number and depth of sequences covered, remain considerable barriers to progress and should be collectively addressed. Preclinical approaches can be designed to include canine clinical trials addressing immune modulation as well as combined-targeted inhibition of Rat Sarcoma Superfamily/Mitogen-activated protein kinase (RAS/MAPK) and/or Phosphatidylinositol-3-Kinase/Protein Kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) signal transduction, pathways frequently activated in both human and canine melanomas. Future investment should be aimed towards improving understanding of canine melanoma as a predictive preclinical surrogate for human melanoma and for mutually benefiting these uniquely co-dependent species. Full article
(This article belongs to the Special Issue Animal Models of Melanoma)
Show Figures

Graphical abstract

Back to TopTop