Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = network structural entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3818 KB  
Article
Energy Regulation-Aware Layered Control Architecture for Building Energy Systems Using Constraint-Aware Deep Reinforcement Learning and Virtual Energy Storage Modeling
by Siwei Li, Congxiang Tian and Ahmed N. Abdalla
Energies 2025, 18(17), 4698; https://doi.org/10.3390/en18174698 - 4 Sep 2025
Abstract
In modern intelligent buildings, the control of Building Energy Systems (BES) faces increasing complexity in balancing energy costs, thermal comfort, and operational flexibility. Traditional centralized or flat deep reinforcement learning (DRL) methods often fail to effectively handle the multi-timescale dynamics, large state–action spaces, [...] Read more.
In modern intelligent buildings, the control of Building Energy Systems (BES) faces increasing complexity in balancing energy costs, thermal comfort, and operational flexibility. Traditional centralized or flat deep reinforcement learning (DRL) methods often fail to effectively handle the multi-timescale dynamics, large state–action spaces, and strict constraint satisfaction required for real-world energy systems. To address these challenges, this paper proposes an energy policy-aware layered control architecture that combines Virtual Energy Storage System (VESS) modeling with a novel Dynamic Constraint-Aware Policy Optimization (DCPO) algorithm. The VESS is modeled based on the thermal inertia of building envelope components, quantifying flexibility in terms of virtual power, capacity, and state of charge, thus enabling BES to behave as if it had embedded, non-physical energy storage. Building on this, the BES control problem is structured using a hierarchical Markov Decision Process, in which the upper level handles strategic decisions (e.g., VESS dispatch, HVAC modes), while the lower level manages real-time control (e.g., temperature adjustments, load balancing). The proposed DCPO algorithm extends actor–critic learning by incorporating dynamic policy constraints, entropy regularization, and adaptive clipping to ensure feasible and efficient policy learning under both operational and comfort-related constraints. Simulation experiments demonstrate that the proposed approach outperforms established algorithms like Deep Q-Networks (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed DDPG (TD3). Specifically, it achieves a 32.6% reduction in operational costs and over a 51% decrease in thermal comfort violations compared to DQN, while ensuring millisecond-level policy generation suitable for real-time BES deployment. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

18 pages, 6001 KB  
Article
A Graph Contrastive Learning Method for Enhancing Genome Recovery in Complex Microbial Communities
by Guo Wei and Yan Liu
Entropy 2025, 27(9), 921; https://doi.org/10.3390/e27090921 - 31 Aug 2025
Viewed by 159
Abstract
Accurate genome binning is essential for resolving microbial community structure and functional potential from metagenomic data. However, existing approaches—primarily reliant on tetranucleotide frequency (TNF) and abundance profiles—often perform sub-optimally in the face of complex community compositions, low-abundance taxa, and long-read sequencing datasets. To [...] Read more.
Accurate genome binning is essential for resolving microbial community structure and functional potential from metagenomic data. However, existing approaches—primarily reliant on tetranucleotide frequency (TNF) and abundance profiles—often perform sub-optimally in the face of complex community compositions, low-abundance taxa, and long-read sequencing datasets. To address these limitations, we present MBGCCA, a novel metagenomic binning framework that synergistically integrates graph neural networks (GNNs), contrastive learning, and information-theoretic regularization to enhance binning accuracy, robustness, and biological coherence. MBGCCA operates in two stages: (1) multimodal information integration, where TNF and abundance profiles are fused via a deep neural network trained using a multi-view contrastive loss, and (2) self-supervised graph representation learning, which leverages assembly graph topology to refine contig embeddings. The contrastive learning objective follows the InfoMax principle by maximizing mutual information across augmented views and modalities, encouraging the model to extract globally consistent and high-information representations. By aligning perturbed graph views while preserving topological structure, MBGCCA effectively captures both global genomic characteristics and local contig relationships. Comprehensive evaluations using both synthetic and real-world datasets—including wastewater and soil microbiomes—demonstrate that MBGCCA consistently outperforms state-of-the-art binning methods, particularly in challenging scenarios marked by sparse data and high community complexity. These results highlight the value of entropy-aware, topology-preserving learning for advancing metagenomic genome reconstruction. Full article
(This article belongs to the Special Issue Network-Based Machine Learning Approaches in Bioinformatics)
Show Figures

Figure 1

26 pages, 3666 KB  
Article
Distribution Network Fault Segment Localization Method Based on Transfer Entropy MTF and Improved AlexNet
by Sizu Hou and Xiaoyan Wang
Energies 2025, 18(17), 4627; https://doi.org/10.3390/en18174627 - 30 Aug 2025
Viewed by 185
Abstract
In order to improve the localization accuracy and model interpretability of single-phase ground fault sections in distribution networks, a knowledge-integrated and data-driven fault localization model is proposed. The model transforms the transient zero-sequence currents into Markov Transition Field (MTF) images based on transfer [...] Read more.
In order to improve the localization accuracy and model interpretability of single-phase ground fault sections in distribution networks, a knowledge-integrated and data-driven fault localization model is proposed. The model transforms the transient zero-sequence currents into Markov Transition Field (MTF) images based on transfer entropy, and improves the two-channel feature expression with both causal and temporal structures. On this basis, a knowledge guidance mechanism based on a physical mechanism is introduced to focus on the waveform backpropagation characteristics of upstream and downstream nodes of the fault through the feature attention module, and a similarity weighting strategy is constructed by integrating the Hausdorff distance in the all-connectivity layer in order to enhance the model’s capability of discriminating between the key segments. The dataset is constructed in an improved IEEE 14-node simulation system, and the effectiveness of the proposed method is verified by t-SNE feature visualization, comparison experiments with different parameters, misclassification correction analysis, and anti-noise performance evaluation. For misclassified sample datasets, this method achieves an accuracy rate of 99.53%, indicating that it outperforms traditional convolutional neural network models in terms of fault section localization accuracy, generalization capability, and noise robustness. Research shows that the deep integration of knowledge and data can significantly enhance the model’s discriminative ability and engineering practicality, providing new insights for the construction of intelligent power systems with explainability. Full article
Show Figures

Figure 1

25 pages, 6151 KB  
Article
Identification of Sparse Interdependent Edges in Heterogeneous Network Models via Greedy Module Matching
by Qingyu Zou and Yue Gong
Modelling 2025, 6(3), 92; https://doi.org/10.3390/modelling6030092 - 29 Aug 2025
Viewed by 381
Abstract
The identification of interdependent edges plays a critical role in improving information propagation efficiency and enhancing network robustness in interdependent networks. However, existing methods exhibit significant limitations when identifying interdependent edges between networks with substantial differences in edge density. This paper proposes a [...] Read more.
The identification of interdependent edges plays a critical role in improving information propagation efficiency and enhancing network robustness in interdependent networks. However, existing methods exhibit significant limitations when identifying interdependent edges between networks with substantial differences in edge density. This paper proposes a greedy module matching-based method for sparse interdependent edge identification in similar-order heterogeneous networks. The method utilizes degree entropy and betweenness centrality as node characteristic values for sparse and dense networks, respectively. It first leverages structural differences between sparse and dense networks to determine the upper bound of interdependent edges. Then, a clustering algorithm is employed to identify modules in both networks that align with the estimated number of interdependent edges. Finally, a greedy algorithm is applied to infer interdependent edges between sparse and dense networks. The proposed method is validated using synthetic networks and power-communication networks, with network robustness and connection efficiency as evaluation metrics. Additionally, further validation is conducted through applications in problem–answer networks. Experimental results demonstrate that the proposed approach significantly improves the prediction of sparse interdependent relationships in heterogeneous complex networks and has broad applicability across multiple domains. Full article
Show Figures

Graphical abstract

22 pages, 1587 KB  
Article
Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model
by Zhaoliang Zhou, Xiaoli Huang, Zhaoyan Li and Wenbo Jiang
Entropy 2025, 27(9), 911; https://doi.org/10.3390/e27090911 - 28 Aug 2025
Viewed by 303
Abstract
How to identify the key nodes in a complex network is a major challenge. In this paper, we propose a Second-Order Neighborhood Entropy Fuzzy Local Dimension Spring Model (SNEFLD-SM). SNEFLD-SM model combines a variety of centrality methods based on spring model, such as [...] Read more.
How to identify the key nodes in a complex network is a major challenge. In this paper, we propose a Second-Order Neighborhood Entropy Fuzzy Local Dimension Spring Model (SNEFLD-SM). SNEFLD-SM model combines a variety of centrality methods based on spring model, such as second-order neighborhood centrality, betweenness centrality, and fractal dimension, to evaluate the importance of nodes. Fractal technology can effectively boost the framework’s proficiency in understanding network self-similarity and hierarchical structure in multi-scale complex networks. It overcomes the limitation of the traditional centrality method which only focuses on local or global information. The method introduces information entropy and node influence range; information entropy can effectively capture the local and global features of the network. The node influence rangecan increase the node importance distinction and reduce the calculation cost. Meanwhile, an attenuation factor is introduced to suppress the “rich-club” phenomenon. Tests on six networks show that SNEFLD-SM has higher accuracy in critical node detection than traditional methods. Furthermore, the application of information entropy further strengthens the model’s capability to recognize key nodes. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

26 pages, 32601 KB  
Article
Dynamic Analysis and FPGA Implementation of a Fractional-Order Memristive Hopfield Neural Network with Hidden Chaotic Dual-Wing Attractors
by Shaoqi He, Fei Yu, Rongyao Guo, Mingfang Zheng, Tinghui Tang, Jie Jin and Chunhua Wang
Fractal Fract. 2025, 9(9), 561; https://doi.org/10.3390/fractalfract9090561 - 26 Aug 2025
Viewed by 387
Abstract
To model the response of neural networks to electromagnetic radiation in real-world environments, this study proposes a memristive dual-wing fractional-order Hopfield neural network (MDW-FOMHNN) model, utilizing a fractional-order memristor to simulate neuronal responses to electromagnetic radiation, thereby achieving complex chaotic dynamics. Analysis reveals [...] Read more.
To model the response of neural networks to electromagnetic radiation in real-world environments, this study proposes a memristive dual-wing fractional-order Hopfield neural network (MDW-FOMHNN) model, utilizing a fractional-order memristor to simulate neuronal responses to electromagnetic radiation, thereby achieving complex chaotic dynamics. Analysis reveals that within specific ranges of the coupling strength, the MDW-FOMHNN lacks equilibrium points and exhibits hidden chaotic attractors. Numerical solutions are obtained using the Adomian Decomposition Method (ADM), and the system’s chaotic behavior is confirmed through Lyapunov exponent spectra, bifurcation diagrams, phase portraits, and time series. The study further demonstrates that the coupling strength and fractional order significantly modulate attractor morphologies, revealing diverse attractor structures and their coexistence. The complexity of the MDW-FOMHNN output sequence is quantified using spectral entropy, highlighting the system’s potential for applications in cryptography and related fields. Based on the polynomial form derived from ADM, a field programmable gate array (FPGA) implementation scheme is developed, and the expected chaotic attractors are successfully generated on an oscilloscope, thereby validating the consistency between theoretical analysis and numerical simulations. Finally, to link theory with practice, a simple and efficient MDW-FOMHNN-based encryption/decryption scheme is presented. Full article
(This article belongs to the Special Issue Advances in Fractional-Order Chaotic and Complex Systems)
Show Figures

Figure 1

25 pages, 3904 KB  
Article
Physics-Guided Multi-Representation Learning with Quadruple Consistency Constraints for Robust Cloud Detection in Multi-Platform Remote Sensing
by Qing Xu, Zichen Zhang, Guanfang Wang and Yunjie Chen
Remote Sens. 2025, 17(17), 2946; https://doi.org/10.3390/rs17172946 - 25 Aug 2025
Viewed by 562
Abstract
With the rapid expansion of multi-platform remote sensing applications, cloud contamination significantly impedes cross-platform data utilization. Current cloud detection methods face critical technical challenges in cross-platform settings, including neglect of atmospheric radiative transfer mechanisms, inadequate multi-scale structural decoupling, high intra-class variability coupled with [...] Read more.
With the rapid expansion of multi-platform remote sensing applications, cloud contamination significantly impedes cross-platform data utilization. Current cloud detection methods face critical technical challenges in cross-platform settings, including neglect of atmospheric radiative transfer mechanisms, inadequate multi-scale structural decoupling, high intra-class variability coupled with inter-class similarity, cloud boundary ambiguity, cross-modal feature inconsistency, and noise propagation in pseudo-labels within semi-supervised frameworks. To address these issues, we introduce a Physics-Guided Multi-Representation Network (PGMRN) that adopts a student–teacher architecture and fuses tri-modal representations—Pseudo-NDVI, structural, and textural features—via atmospheric priors and intrinsic image decomposition. Specifically, PGMRN first incorporates an InfoNCE contrastive loss to enhance intra-class compactness and inter-class discrimination while preserving physical consistency; subsequently, a boundary-aware regional adaptive weighted cross-entropy loss integrates PA-CAM confidence with distance transforms to refine edge accuracy; furthermore, an Uncertainty-Aware Quadruple Consistency Propagation (UAQCP) enforces alignment across structural, textural, RGB, and physical modalities; and finally, a dynamic confidence-screening mechanism that couples PA-CAM with information entropy and percentile-based thresholding robustly refines pseudo-labels. Extensive experiments on four benchmark datasets demonstrate that PGMRN achieves state-of-the-art performance, with Mean IoU values of 70.8% on TCDD, 79.0% on HRC_WHU, and 83.8% on SWIMSEG, outperforming existing methods. Full article
Show Figures

Figure 1

37 pages, 5256 KB  
Review
Carbon/High-Entropy Alloy Nanocomposites: Synergistic Innovations and Breakthrough Challenges for Electrochemical Energy Storage
by Li Sun, Hangyu Li, Yu Dong, Wan Rong, Na Zhou, Rui Dang, Jianle Xu, Qigao Cao and Chunxu Pan
Batteries 2025, 11(9), 317; https://doi.org/10.3390/batteries11090317 - 23 Aug 2025
Viewed by 358
Abstract
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long [...] Read more.
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long cycle life. Carbon/high-entropy alloy nanocomposites provide an innovative solution through multi-component synergistic effects and cross-scale structural design: the “cocktail effect” of high-entropy alloys confers excellent redox activity and structural stability, while the three-dimensional conductive network of the carbon skeleton enhances charge transfer efficiency. Together, they achieve synergistic enhancement via interfacial electron coupling, stress buffering, and dual storage mechanisms. This review systematically analyzes the charge storage/attenuation mechanisms and performance advantages of this composite material in diverse energy-storage devices (lithium-ion batteries, lithium-sulfur batteries, etc.), evaluates the characteristics and limitations of preparation techniques such as mechanical alloying and chemical vapor deposition, identifies five major challenges (including complex and costly synthesis, ambiguous interfacial interaction mechanisms, lagging theoretical research, performance-cost trade-offs, and slow industrialization processes), and prospectively proposes eight research directions (including multi-scale structural regulation and sustainable preparation technologies, etc.). Through interdisciplinary perspectives, this review aims to provide a theoretical foundation for deepening the understanding of carbon/high-entropy alloy composite energy-storage mechanisms and guiding industrial applications, thereby advancing breakthroughs in electrochemical energy-storage technology under the energy transition. Full article
Show Figures

Graphical abstract

17 pages, 1824 KB  
Article
Evolving Public Attitudes Towards the HPV Vaccine in China: A Fine-Grained Emotion Analysis of Sina Weibo (2016 vs. 2024)
by Bowen Shi, Ruibo Chen, Xinyue Yuan and Junran Wu
Entropy 2025, 27(9), 887; https://doi.org/10.3390/e27090887 - 22 Aug 2025
Viewed by 426
Abstract
In the digital age, social media significantly shapes public attitudes and emotional responses towards health interventions, such as HPV vaccination, which is critical in developing countries. This study employed a deep learning model to identify fine-grained emotions of 38,615 HPV-related tweets from 2016 [...] Read more.
In the digital age, social media significantly shapes public attitudes and emotional responses towards health interventions, such as HPV vaccination, which is critical in developing countries. This study employed a deep learning model to identify fine-grained emotions of 38,615 HPV-related tweets from 2016 to 2024, revealing significant shifts in public emotions. Notably, skepticism about vaccine commercialization motives heightened anger, while university outreach initiatives fostered positive emotions. Structural entropy analysis highlighted polarized emotional communication networks: the network of joy exhibited lower entropy with centralized information flow, whereas other emotions displayed higher entropy, fragmented dissemination, and enhanced cross-community communication efficiency. New communicators, such as campus accounts and music bloggers, played pivotal roles in spreading positive emotions, while individual bloggers in specific fields amplified negative emotions like anger, particularly in closed networks. This research underscores the intricate dynamics of online health communication and the need for targeted interventions to address stigma and enhance public awareness of HPV vaccination, providing valuable insights for future public health policy. Full article
(This article belongs to the Special Issue Complexity of Social Networks)
Show Figures

Figure 1

32 pages, 2072 KB  
Article
Airline Ranking Using Social Feedback and Adapted Fuzzy Belief TOPSIS
by Ewa Roszkowska and Marzena Filipowicz-Chomko
Entropy 2025, 27(8), 879; https://doi.org/10.3390/e27080879 - 19 Aug 2025
Viewed by 483
Abstract
In the era of digital interconnectivity, user-generated reviews on platforms such as TripAdvisor have become a valuable source of social feedback, reflecting collective experiences and perceptions of airline services. However, aggregating such feedback presents several challenges: evaluations are typically expressed using linguistic ordinal [...] Read more.
In the era of digital interconnectivity, user-generated reviews on platforms such as TripAdvisor have become a valuable source of social feedback, reflecting collective experiences and perceptions of airline services. However, aggregating such feedback presents several challenges: evaluations are typically expressed using linguistic ordinal scales, are subjective, often incomplete, and influenced by opinion dynamics within social networks. To effectively deal with these complexities and extract meaningful insights, this study proposes an information-driven decision-making framework that integrates Fuzzy Belief Structures with the TOPSIS method. To handle the uncertainty and imprecision of linguistic ratings, user opinions are modeled as fuzzy belief distributions over satisfaction levels. Rankings are then derived using TOPSIS by comparing each airline’s aggregated profile to ideal satisfaction benchmarks via a belief-based distance measure. This framework presents a novel solution for measuring synthetic satisfaction in complex social feedback systems, thereby contributing to the understanding of information flow, belief aggregation, and emergent order in digital opinion networks. The methodology is demonstrated using a real-world dataset of TripAdvisor airline reviews, providing a robust and interpretable benchmark for service quality. Moreover, this study applies Shannon entropy to classify and interpret the consistency of customer satisfaction ratings among Star Alliance airlines. The results confirm the stability of the Airline Satisfaction Index (ASI), with extremely high correlations among the five rankings generated using different fuzzy utility function models. The methodology reveals that airlines such as Singapore Airlines, ANA, EVA Air, and Air New Zealand consistently achieve high satisfaction scores across all fuzzy model configurations, highlighting their strong and stable performance regardless of model variation. These airlines also show both low entropy and high average scores, confirming their consistent excellence. Full article
(This article belongs to the Special Issue Dynamics in Biological and Social Networks)
Show Figures

Figure 1

23 pages, 11219 KB  
Article
Texture Feature Analysis of the Microstructure of Cement-Based Materials During Hydration
by Tinghong Pan, Rongxin Guo, Yong Yan, Chaoshu Fu and Runsheng Lin
Fractal Fract. 2025, 9(8), 543; https://doi.org/10.3390/fractalfract9080543 - 19 Aug 2025
Viewed by 405
Abstract
This study presents a comprehensive grayscale texture analysis framework for investigating the microstructural evolution of cement-based materials during hydration. High-resolution X-ray computed tomography (X-CT) slice images were analyzed across five hydration ages (12 h, 1 d, 3 d, 7 d, and 31 d) [...] Read more.
This study presents a comprehensive grayscale texture analysis framework for investigating the microstructural evolution of cement-based materials during hydration. High-resolution X-ray computed tomography (X-CT) slice images were analyzed across five hydration ages (12 h, 1 d, 3 d, 7 d, and 31 d) using three complementary methods: grayscale histogram statistics, fractal dimension calculation via differential box-counting, and texture feature extraction based on the gray-level co-occurrence matrix (GLCM). The average value of the mean grayscale value of slice (MeanG_AVE) shows a trend of increasing and then decreasing. Average fractal dimension values (DB_AVE) decreased logarithmically from 2.48 (12 h) to 2.41 (31 d), quantifying progressive microstructural homogenization. The trend reflects pore refinement and gel network consolidation. GLCM texture parameters—including energy, entropy, contrast, and correlation—captured the directional statistical patterns and phase transitions during hydration. Energy increased with hydration time, reflecting greater spatial homogeneity and phase continuity, while entropy and contrast declined, signaling reduced structural complexity and interfacial sharpness. A quantitative evaluation of parameter performance based on intra-sample stability, inter-sample discrimination, and signal-to-noise ratio (SNR) revealed energy, entropy, and contrast as the most effective descriptors for tracking hydration-induced microstructural evolution. This work demonstrates a novel, integrative, and segmentation-free methodology for texture quantification, offering robust insights into the microstructural mechanisms of cement hydration. The findings provide a scalable basis for performance prediction, material optimization, and intelligent cementitious design. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Materials Science)
Show Figures

Figure 1

18 pages, 768 KB  
Article
Uncertainty-Aware Design of High-Entropy Alloys via Ensemble Thermodynamic Modeling and Search Space Pruning
by Roman Dębski, Władysław Gąsior, Wojciech Gierlotka and Adam Dębski
Appl. Sci. 2025, 15(16), 8991; https://doi.org/10.3390/app15168991 - 14 Aug 2025
Viewed by 372
Abstract
The discovery and design of high-entropy alloys (HEAs) faces significant challenges due to the vast combinatorial design space and uncertainties in thermodynamic data. This work presents a modular, uncertainty-aware computational framework with the primary objective of accelerating the discovery of solid-solution HEA candidates. [...] Read more.
The discovery and design of high-entropy alloys (HEAs) faces significant challenges due to the vast combinatorial design space and uncertainties in thermodynamic data. This work presents a modular, uncertainty-aware computational framework with the primary objective of accelerating the discovery of solid-solution HEA candidates. The proposed pipeline integrates ensemble thermodynamic modeling, Monte Carlo-based estimation, and a structured three-phase pruning algorithm for efficient search space reduction. Key quantitative results are achieved in two main areas. First, for binary alloy thermodynamics, a Bayesian Neural Network (BNN) ensemble trained on domain-informed features predicts mixing enthalpies with high accuracy, yielding a mean absolute error (MAE) of 0.48 kJ/mol—substantially outperforming the classical Miedema model (MAE = 4.27 kJ/mol). These probabilistic predictions are propagated through Monte Carlo sampling to estimate multi-component thermodynamic descriptors, including ΔHmix and the Ω parameter, while capturing predictive uncertainty. Second, in a case study on the Al-Cu-Fe-Ni-Ti system, the framework reduces a 2.4 million (2.4 M) candidate pool to just 91 high-confidence compositions. Final selection is guided by an uncertainty-aware viability metric, P(HEA), and supported by interpretable radar plot visualizations for multi-objective assessment. The results demonstrate the framework’s ability to combine physical priors, probabilistic modeling, and design heuristics into a data-efficient and interpretable pipeline for materials discovery. This establishes a foundation for future HEA optimization, dataset refinement, and adaptive experimental design under uncertainty. Full article
Show Figures

Figure 1

22 pages, 4719 KB  
Article
An Explainable AI Approach for Interpretable Cross-Layer Intrusion Detection in Internet of Medical Things
by Michael Georgiades and Faisal Hussain
Electronics 2025, 14(16), 3218; https://doi.org/10.3390/electronics14163218 - 13 Aug 2025
Viewed by 541
Abstract
This paper presents a cross-layer intrusion detection framework leveraging explainable artificial intelligence (XAI) and interpretability methods to enhance transparency and robustness in attack detection within the Internet of Medical Things (IoMT) domain. By addressing the dual challenges of compromised data integrity, which span [...] Read more.
This paper presents a cross-layer intrusion detection framework leveraging explainable artificial intelligence (XAI) and interpretability methods to enhance transparency and robustness in attack detection within the Internet of Medical Things (IoMT) domain. By addressing the dual challenges of compromised data integrity, which span both biosensor and network-layer data, this study combines advanced techniques to enhance interpretability, accuracy, and trust. Unlike conventional flow-based intrusion detection systems that primarily rely on transport-layer statistics, the proposed framework operates directly on raw packet-level features and application-layer semantics, including MQTT message types, payload entropy, and topic structures. The key contributions of this research include the application of K-Means clustering combined with the principal component analysis (PCA) algorthim for initial categorization of attack types, the use of SHapley Additive exPlanations (SHAP) for feature prioritization to identify the most influential factors in model predictions, and the employment of Partial Dependence Plots (PDP) and Accumulated Local Effects (ALE) to elucidate feature interactions across layers. These methods enhance the system’s interpretability, making data-driven decisions more accessible to nontechnical stakeholders. Evaluation on a realistic healthcare IoMT testbed demonstrates significant improvements in detection accuracy and decision-making transparency. Furthermore, the proposed approach highlights the effectiveness of explainable and cross-layer intrusion detection for secure and trustworthy medical IoT environments that are tailored for cybersecurity analysts and healthcare stakeholders. Full article
Show Figures

Figure 1

20 pages, 1303 KB  
Article
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
by Hui Cai, Mingxin Yan, Xingning Han, Guoteng Wang, Quanquan Wang and Ying Huang
Energies 2025, 18(16), 4216; https://doi.org/10.3390/en18164216 - 8 Aug 2025
Viewed by 293
Abstract
With the maturation of ultra-high-voltage direct current (UHVDC) technology, DC grids are taking on a more critical role in power systems. However, their impact on AC grids has become more pronounced, particularly in terms of frequency, short-circuit current level, and power flow control [...] Read more.
With the maturation of ultra-high-voltage direct current (UHVDC) technology, DC grids are taking on a more critical role in power systems. However, their impact on AC grids has become more pronounced, particularly in terms of frequency, short-circuit current level, and power flow control capabilities, which also affects the power supply reliability of the receiving-end grid. To comprehensively evaluate the balance between AC and DC strength at the receiving-end, this paper proposes a multidimensional assessment system that covers grid strength and operational security under various operating conditions. Furthermore, a rationality evaluation model for the AC/DC strong–weak balance relationship is developed based on the entropy weight method, forming a complete evaluation framework for assessing the AC/DC strong–weak balance in the receiving-end power grid. Finally, to address strength imbalances in grid, a structural optimization method for the receiving-end grid is designed by combining network decoupling techniques with modular multilevel converter-based HVDC (MMC–HVDC), serving as a strategy for enhancing grid stability. The proposed strategy is validated through simulations in a typical test system using PSD-BPA, demonstrating its effectiveness in optimizing power flow characteristics, improving system stability, reducing the risk of short-circuit current overloads and large-scale blackouts, and maintaining efficient system operation. Full article
Show Figures

Figure 1

14 pages, 545 KB  
Article
Hybrid Galam–Bass Model for Technology Innovation
by Giulia Rotundo, Roy Cerqueti, Gurjeet Dhesi, Claudiu Herteliu, Parmjit Kaur and Marcel Ausloos
Entropy 2025, 27(8), 789; https://doi.org/10.3390/e27080789 - 25 Jul 2025
Viewed by 335
Abstract
This work proposes a hybrid model that combines the Galam model of opinion dynamics with the Bass diffusion model used in technology adoption on Barabasi–Albert complex networks. The main idea is to advance a version of the Bass model that can suitably describe [...] Read more.
This work proposes a hybrid model that combines the Galam model of opinion dynamics with the Bass diffusion model used in technology adoption on Barabasi–Albert complex networks. The main idea is to advance a version of the Bass model that can suitably describe an opinion formation context while introducing irreversible transitions from group B (opponents) to group A (supporters). Moreover, we extend the model to take into account the presence of a charismatic competitor, which fosters conversion back to the old technology. The approach is different from the introduction of a mean field due to the interactions driven by the network structure. Additionally, we introduce the Kolmogorov–Sinai entropy to quantify the system’s unpredictability and information loss over time. The results show an increase in the regularity of the trajectories as the preferential attachment parameter increases. Full article
(This article belongs to the Special Issue Entropy-Based Applications in Sociophysics II)
Show Figures

Figure 1

Back to TopTop