Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = necrotic enteritis (NE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4515 KiB  
Article
Deoxycholic Acid Mitigates Necrotic Enteritis Through Selective Inhibition of Pathobionts and Enrichment of Specific Lactic Acid Bacteria
by Melanie A. Whitmore, Jiaqing Guo, Dohyung M. Kim, Jing Liu, Isabel Tobin and Guolong Zhang
Pathogens 2025, 14(7), 688; https://doi.org/10.3390/pathogens14070688 - 13 Jul 2025
Viewed by 977
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, poses significant economic challenges to the global poultry industry. The widening ban on in-feed antibiotics in livestock production underscores the need for alternative strategies to combat NE. Deoxycholic acid (DCA), a secondary bile acid, has [...] Read more.
Necrotic enteritis (NE), caused by Clostridium perfringens, poses significant economic challenges to the global poultry industry. The widening ban on in-feed antibiotics in livestock production underscores the need for alternative strategies to combat NE. Deoxycholic acid (DCA), a secondary bile acid, has shown promise in NE mitigation. However, its protective mechanism remains largely unexplored. A total of 120 newly hatched, male Cobb broilers were randomly divided into four treatments to investigate the impact of DCA on host response and intestinal microbiome in both healthy and NE-infected chickens. The results demonstrated that the dietary supplementation of 1.5 g/kg DCA significantly improved animal survival, reversed growth inhibition, and alleviated intestinal lesions (p < 0.01). Furthermore, DCA selectively inhibited the NE-induced proliferation of C. perfringens and other pathobionts such as Escherichia and Enterococcus cecorum. Concurrently, DCA markedly enriched dominant lactic acid bacteria like Lactobacillus johnsonii in both the ileum and cecum of NE-infected chickens. However, DCA had a marginal effect on the jejunal transcriptomic response in both mock- and NE-infected chickens. Therefore, we conclude that DCA protects chicken from NE mainly through the targeted inhibition of pathobionts including C. perfringens, with minimum impact on the host. These findings elucidate the protective mechanisms of DCA, supporting its development as a promising antibiotic alternative for NE mitigation. Full article
(This article belongs to the Section Vaccines and Therapeutic Developments)
Show Figures

Figure 1

20 pages, 4470 KiB  
Article
Cellulose Nanocrystal/Zinc Oxide Bio-Nanocomposite Activity on Planktonic and Biofilm Producing Pan Drug-Resistant Clostridium perfringens Isolated from Chickens and Turkeys
by Ismail Amin, Adel Abdelkhalek, Azza S. El-Demerdash, Ioan Pet, Mirela Ahmadi and Norhan K. Abd El-Aziz
Antibiotics 2025, 14(6), 575; https://doi.org/10.3390/antibiotics14060575 - 3 Jun 2025
Viewed by 815
Abstract
Background/Objectives: Clostridium perfringens is a normal inhabitant of the intestinal tract of poultry, and it has the potential to induce cholangiohepatitis and necrotic enteritis (NE). The poultry industry suffers significant financial losses because of NE, and treatment becomes more challenging due to [...] Read more.
Background/Objectives: Clostridium perfringens is a normal inhabitant of the intestinal tract of poultry, and it has the potential to induce cholangiohepatitis and necrotic enteritis (NE). The poultry industry suffers significant financial losses because of NE, and treatment becomes more challenging due to resistant C. perfringens strains. Methods: The antimicrobial and antibiofilm activities of cellulose nanocrystals/zinc oxide nanocomposite (CNCs/ZnO) were assesses against pan drug-resistant (PDR) C. perfringens isolated from chickens and turkeys using phenotypic and molecular assays. Results: The overall prevalence rate of C. perfringens was 44.8% (43.75% in chickens and 58.33% in turkeys). Interestingly, the antimicrobial susceptibility testing of C. perfringens isolates revealed the alarming PDR (29.9%), extensively drug-resistant (XDR, 54.5%), and multidrug-resistant (MDR, 15.6%) isolates, with multiple antimicrobial resistance (MAR) indices ranging from 0.84 to 1. All PDR C. perfringens isolates could synthesize biofilms; among them, 21.7% were strong biofilm producers. The antimicrobial potentials of CNCs/ZnO against PDR C. perfringens isolates were evaluated by the agar well diffusion and broth microdilution techniques, and the results showed strong antimicrobial activity of the green nanocomposite with inhibition zones’ diameters of 20–40 mm and MIC value of 0.125 µg/mL. Moreover, the nanocomposite exhibited a great antibiofilm effect against the pre-existent biofilms of PDR C. perfringens isolates in a dose-dependent manner [MBIC50 up to 83.43 ± 1.98 for the CNCs/ZnO MBC concentration (0.25 μg/mL)]. The transcript levels of agrB quorum sensing gene and pilA2 type IV pili gene responsible for biofilm formation were determined by the quantitative real time-PCR technique, pre- and post-treatment with the CNCs/ZnO nanocomposite. The expression of both genes downregulated (0.099 ± 0.012–0.454 ± 0.031 and 0.104 ± 0.006–0.403 ± 0.035, respectively) when compared to the non-treated isolates. Conclusions: To the best of our knowledge, this is the first report of CNCs/ZnO nanocomposite’s antimicrobial and antibiofilm activities against PDR C. perfringens isolated from chickens and turkeys. Full article
(This article belongs to the Special Issue Antimicrobial and Antibiofilm Activity by Natural Compounds)
Show Figures

Figure 1

23 pages, 3484 KiB  
Article
In Silico Design, Optimization, and Evaluation of a Multi-Epitope Vaccine Targeting the Clostridium perfringens Collagen Adhesin Protein
by Dhiraj Chundru, Shailes Bhattrai, Madhusudan Timilsina, Hyun Lillehoj, Zhifeng Sun, Mostafa Ghanem and Charles Li
Microorganisms 2025, 13(5), 1147; https://doi.org/10.3390/microorganisms13051147 - 16 May 2025
Viewed by 880
Abstract
Necrotic enteritis (NE), caused by pathogenic Clostridium perfringens, poses a significant threat to global poultry health, with estimated annual losses exceeding USD 6 billion. The rising incidence of NE has been associated with the reduced use of antibiotic growth promoters, underscoring the [...] Read more.
Necrotic enteritis (NE), caused by pathogenic Clostridium perfringens, poses a significant threat to global poultry health, with estimated annual losses exceeding USD 6 billion. The rising incidence of NE has been associated with the reduced use of antibiotic growth promoters, underscoring the urgent need for alternative control measures such as vaccination. Collagen adhesin protein (CNA), a key virulence factor in NE pathogenesis, represents a promising vaccine target. The US Food and Drug Administration has begun phasing out animal testing requirements for biologics and monoclonal antibody drugs. In this study, a computational multi-epitope vaccine (MEV) targeting CNA was designed by integrating predicted Cluster of Differentiation (CD)4+ helper T lymphocyte (Th), CD8+ cytotoxic T lymphocyte (CTL), and B-cell epitopes. Bioinformatics tools were used to identify immunogenic, antigenic, and non-allergenic epitopes assembled into a 115-amino-acid peptide vaccine construct. The candidate demonstrated strong stability and solubility. In silico immune simulation predicted robust immune responses, including elevated IgG and IgM antibody levels, plasma cell proliferation, Th memory formation, and CTL activation, comparable to responses elicited by a full-length CNA. These findings support the potential of the designed peptide as one of the multiple effective NE vaccine components, offering a promising alternative to antibiotic-based approaches in poultry disease management. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

14 pages, 7496 KiB  
Article
The Mechanistic Target of Rapamycin Mediates Clostridium perfringens-Induced Chicken Necrotic Enteritis Attenuated by Secondary Bile Acid Deoxycholic Acid
by Mohit Bansal, Tahrir Alenezi, Ying Fu, Janashrit Shrestha, Ayidh Almansour, Hong Wang, Anamika Gupta, Rohana Liyanage and Xiaolun Sun
Microorganisms 2025, 13(4), 762; https://doi.org/10.3390/microorganisms13040762 - 27 Mar 2025
Cited by 1 | Viewed by 608
Abstract
Clostridium perfringens is a prevalent gut bacterial pathogen in humans and animals. This study investigated the role of the mechanistic targets of rapamycin (mTOR) and deoxycholic acid (DCA) on C. perfringens intestinal infection. Chickens were sequentially infected with Eimeria maxima and received the [...] Read more.
Clostridium perfringens is a prevalent gut bacterial pathogen in humans and animals. This study investigated the role of the mechanistic targets of rapamycin (mTOR) and deoxycholic acid (DCA) on C. perfringens intestinal infection. Chickens were sequentially infected with Eimeria maxima and received the mTOR inhibitor rapamycin and DCA. C. perfringens-induced necrotic enteritis (NE) was evaluated using body weight gain (BWG), histopathology, bile acids, pathogen colonization, cell infiltration and death, and gene expression. The significant difference of p < 0.05 was analyzed by one-way ANOVA and multiple comparisons. Notably, rapamycin strongly reduced the subclinical and clinical NE histopathologies. DCA and DCA combined with rapamycin alleviated clinical NE and BWG loss. Rapamycin, DCA, and DCA + rapamycin attenuated bile acid reduction in NE birds, and they also reduced immune cell infiltration into the intestinal lamina propria as well as immune cell migration in vitro. At molecular levels, DCA and DCA + rapamycin reduced proinflammatory IFNγ, MMP9, IL23, and IL17 gene expression. Rapamycin, DCA, and DCA + rapamycin reduced NE-induced intestinal cell apoptosis. Together, these results suggest that mTOR signaling mediates C. perfringens-induced ileitis, and combining mTOR inhibition and DCA improves the intervention efficacy against NE ileitis and BWG loss. Full article
(This article belongs to the Special Issue Epidemiology, Prevention and Control of Foodborne Microbial Pathogens)
Show Figures

Figure 1

13 pages, 1678 KiB  
Article
Comparative Efficacy of Plant Extracts and Probiotics on Growth and Gut Health in Chickens with Necrotic Enteritis
by Ruiting Zhang, Jia Yang, Qingjie Wang, Dandan Hu, Qiping Zhao, Shunhai Zhu, Yu Qiao, Fanghe Zhao, Zhongchuang Wang, Jinwen Wang, Yu Yu, Hongyu Han, Lili Hao and Hui Dong
Animals 2024, 14(22), 3312; https://doi.org/10.3390/ani14223312 - 18 Nov 2024
Cited by 4 | Viewed by 1277
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, represents a major economic challenge to poultry production. This study evaluated the effects of four plant extracts—Astragalus, pomegranate peel, Sophora flavescens, and Artemisia annua—in combination with B. subtilis, as potential [...] Read more.
Necrotic enteritis (NE), caused by Clostridium perfringens, represents a major economic challenge to poultry production. This study evaluated the effects of four plant extracts—Astragalus, pomegranate peel, Sophora flavescens, and Artemisia annua—in combination with B. subtilis, as potential antibiotic alternatives for controlling NE. Using an experimentally induced NE model produced by coinfection with Eimeria maxima and C. perfringens, 288 chickens were divided into 12 groups to assess growth performance, intestinal lesions, and inflammatory markers. Compared with the enramycin group, the pomegranate peel extract group had a 9.9% increase in body weight gain (BWG), significant enhancement in claudin-2 expression, and reduced production of inflammatory factors. Compared with the infected control group, the combination of A. annua extract and B. subtilis resulted in the lowest intestinal lesion scores. The claudin-2, occludin, and zonula occludens-1 expression levels in the group treated with S. flavescens extract combined with B. subtilis increased to the highest levels compared to those in the healthy control group. These findings emphasize the potential of plant extracts, particularly pomegranate peel and A. annua with B. subtilis, as natural alternatives for NE management in poultry, providing a promising approach to reducing reliance on antibiotics. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

8 pages, 694 KiB  
Communication
Assessing the Effects of Phytogenic Feed Additives on Broilers during a Necrotic Enteritis Challenge
by Candice E. C. Blue, Mallory B. White and Rami A. Dalloul
Poultry 2024, 3(4), 346-353; https://doi.org/10.3390/poultry3040026 - 28 Sep 2024
Viewed by 1949
Abstract
Subclinical necrotic enteritis (NE) is an enteric disease that inflicts significant economic losses in the poultry industry, primarily by reducing performance in commercial flocks but without significant mortality. This study evaluated the effects of a variety of phytogenic blends on broilers’ performance and [...] Read more.
Subclinical necrotic enteritis (NE) is an enteric disease that inflicts significant economic losses in the poultry industry, primarily by reducing performance in commercial flocks but without significant mortality. This study evaluated the effects of a variety of phytogenic blends on broilers’ performance and carcass composition during an induced NE challenge. In this study, 1120 day (d)-old male broilers were allocated to four treatments groups (14 replicate floor pens, 20 birds/pen): the control (CONT) group, fed a basal corn-soybean diet, and three phytogenic blend dietary additives (PHYTO1, PHYTO2, and PHYTO3) added to the basal diet at 150, 250, and 500 mg/kg feed, respectively. Subclinical NE was induced by spraying a concentrated coccidiosis vaccine onto the feed and litter 24 h post-placement. On day 8, two birds/pen were necropsied for NE lesions. On days 8, 14, 28, and 42, the average daily gain (ADG), feed intake (ADFI), and feed conversion ratio (FCR) were calculated. On day 42, two birds/pen were euthanized to assess carcass composition using dual-energy X-ray absorptiometry (DXA). Statistical analyses for all data were performed using the ANOVA procedure (JMP, Pro 16) and significance (p ≤ 0.05) between treatments was determined by the LSD test. There was no effect of treatment on NE lesions. PHYTO1, PHYTO2, and PHYTO3 significantly improved FCR from days 9 to 14, 0 to 14, and 0 to 42 and resulted in greater ADG from days 9 to 14, 29 to 42 and cumulatively on days 0 to 42. Carcass composition data revealed a numerically higher lean-to-fat ratio in the PHYTO groups compared to the CONT group. These results indicate that the dietary supplementation of phytogenic blends could alleviate the adverse effects of NE challenge on broilers’ performance and carcass composition. Full article
Show Figures

Figure 1

21 pages, 8026 KiB  
Article
Polygonum hydropiper Compound Extract Inhibits Clostridium perfringens-Induced Intestinal Inflammatory Response and Injury in Broiler Chickens by Modulating NLRP3 Inflammasome Signaling
by Jinwu Zhang, Chunzi Peng, Maojie Lv, Shisen Yang, Liji Xie, Jiaxun Feng, Yingyi Wei, Tingjun Hu, Jiakang He, Zhixun Xie and Meiling Yu
Antibiotics 2024, 13(9), 793; https://doi.org/10.3390/antibiotics13090793 - 23 Aug 2024
Viewed by 1641
Abstract
Necrotic enteritis (NE) is a critical disease affecting broiler health, with Clostridium perfringens as its primary pathogen. Polygonum hydropiper compound extract (PHCE), formulated based on traditional Chinese veterinary principles, contains primarily flavonoids with antibacterial, anti-inflammatory, and antioxidant properties. However, PHCE’s efficacy [...] Read more.
Necrotic enteritis (NE) is a critical disease affecting broiler health, with Clostridium perfringens as its primary pathogen. Polygonum hydropiper compound extract (PHCE), formulated based on traditional Chinese veterinary principles, contains primarily flavonoids with antibacterial, anti-inflammatory, and antioxidant properties. However, PHCE’s efficacy against Clostridium perfringens-induced NE and its underlying mechanism remain unclear. This study employed network pharmacology and molecular docking to predict PHCE’s potential mechanisms in treating NE, followed by determining its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Clostridium perfringens (C. perf). Subsequently, the effects of various PHCE doses on intestinal damage, antioxidant capacity, and inflammatory factors in C. perf-infected broilers were assessed. Network pharmacology and molecular docking suggested that PHCE’s therapeutic mechanism for NE involves the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling pathway, with flavonoids such as quercetin, kaempferol, and isorhamnetin as key active components. PHCE exhibited an MIC of 3.13 mg/mL and an MBC of 12.5 mg/mL against C. perf. High PHCE doses effectively reduced intestinal damage scores in both the jejunum and ileum, accompanied by attenuated intestinal pathological changes. Additionally, the high dose significantly increased superoxide dismutase (SOD) levels while decreasing malondialdehyde (MDA), hydrogen peroxide (H2O2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in the jejunum and ileum (p < 0.01 or p < 0.05). PHCE also modulated the expression of caspase-1, IL-1β, gasdermin D (GSDMD), and NLRP3 mRNA, key components of the NLRP3 inflammasome signaling pathway, in both intestinal segments. These findings collectively indicate that PHCE protects against C. perf-induced oxidative stress and inflammatory damage in NE. By enhancing antioxidant capacity, PHCE likely reduces oxidative stress and inflammatory responses, subsequently modulating NLRP3 inflammasome signaling pathway key factor expression. Overall, this research provides valuable insights into the protective mechanism of the herbal compound PHCE and its potential benefits for avian health. Full article
(This article belongs to the Special Issue Natural Compounds as Antimicrobial Agents, 2nd Edition)
Show Figures

Figure 1

16 pages, 494 KiB  
Article
Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis
by Vishal Manjunatha, Julian E. Nixon, Greg F. Mathis, Brett S. Lumpkins, Zeynep B. Güzel-Seydim, Atif C. Seydim, Annel K. Greene and Xiuping Jiang
Animals 2024, 14(14), 2074; https://doi.org/10.3390/ani14142074 - 15 Jul 2024
Cited by 3 | Viewed by 1689
Abstract
Coccidiosis and necrotic enteritis (NE) are prevalent poultry ailments worldwide, leading to decreased live performance and elevated mortality rates without antibiotic usage. This study evaluated Nigella sativa (black cumin) seeds (BCS) and kefir as alternatives to antibiotics for broilers. An in vivo study [...] Read more.
Coccidiosis and necrotic enteritis (NE) are prevalent poultry ailments worldwide, leading to decreased live performance and elevated mortality rates without antibiotic usage. This study evaluated Nigella sativa (black cumin) seeds (BCS) and kefir as alternatives to antibiotics for broilers. An in vivo study over a 28-day period, using 384 Cobb 500 male broilers organized into six treatment groups as part of a completely randomized block experimental design was conducted. Each treatment group included eight replicates, with each replicate containing eight birds. The treatments included positive control, negative control, antibiotic control, 5% BCS in feed, 20% kefir in drinking water, and a combination of 5% BCS and 20% kefir. NE was induced in broilers by administering ~5000 oocysts of Eimeria maxima orally on day 14, followed by inoculation with about 108 CFU/mL of Clostridium perfringens (Cp) (strain Cp#4) on days 19, 20, and 21. Live performance metrics including feed intake, body weight gain, and feed conversion were assessed in broilers. Additionally, NE disease outcomes such as lesion scores, mortality rates, and Cp populations in cecum were determined during the study. The BCS, kefir, and the combination had no detrimental effect on broiler live performance. BCS-treated and combination groups had lower NE scores (p > 0.05) in comparison to the positive control and exhibited no significant difference (p > 0.05) from antibiotic control. Additionally, treatment groups and antibiotic control were not significantly different (p > 0.05) in mortality, whereas the BCS and kefir combination significantly reduced (p < 0.05) mortality to 14.1% compared to 31.3% for the positive control. C. perfringens vegetative cells significantly decreased (p < 0.05) in treatments with BCS, kefir, and their combination on days 22 and 28 compared to the positive control. On day 22, Cp sores were significantly lower (p < 0.05) for the kefir and combination treatments compared to the positive control. In conclusion, BCS and kefir successfully reduced C. perfringens infection and mortality without any detrimental impact on broiler live performance with the combined treatment being the most effective. These results suggest that BCS and kefir could serve as potential alternatives to antibiotics in managing NE. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

15 pages, 7715 KiB  
Article
Recombinant Bile Salt Hydrolase Enhances the Inhibition Efficiency of Taurodeoxycholic Acid against Clostridium perfringens Virulence
by Tahrir Alenezi, Bilal Alrubaye, Ying Fu, Janashrit Shrestha, Samar Algehani, Hong Wang, Rohana Liyanage and Xiaolun Sun
Pathogens 2024, 13(6), 464; https://doi.org/10.3390/pathogens13060464 - 31 May 2024
Cited by 3 | Viewed by 1702
Abstract
Clostridium perfringens is the main pathogen of chicken necrotic enteritis (NE) causing huge economic losses in the poultry industry. Although dietary secondary bile acid deoxycholic acid (DCA) reduced chicken NE, the accumulation of conjugated tauro-DCA (TDCA) raised concerns regarding DCA efficacy. In this [...] Read more.
Clostridium perfringens is the main pathogen of chicken necrotic enteritis (NE) causing huge economic losses in the poultry industry. Although dietary secondary bile acid deoxycholic acid (DCA) reduced chicken NE, the accumulation of conjugated tauro-DCA (TDCA) raised concerns regarding DCA efficacy. In this study, we aimed to deconjugate TDCA by bile salt hydrolase (BSH) to increase DCA efficacy against the NE pathogen C. perfringens. Assays were conducted to evaluate the inhibition of C. perfringens growth, hydrogen sulfide (H2S) production, and virulence gene expression by TDCA and DCA. BSH activity and sequence alignment were conducted to select the bsh gene for cloning. The bsh gene from Bifidobacterium longum was PCR-amplified and cloned into plasmids pET-28a (pET-BSH) and pDR111 (pDR-BSH) for expressing the BSH protein in E. coli BL21 and Bacillus subtilis 168 (B-sub-BSH), respectively. His-tag-purified BSH from BL21 cells was evaluated by SDS-PAGE, Coomassie blue staining, and a Western blot (WB) assays. Secretory BSH from B. subtilis was analyzed by a Dot-Blot. B-sub-BSH was evaluated for the inhibition of C. perfringens growth. C. perfringens growth reached 7.8 log10 CFU/mL after 24 h culture. C. perfringens growth was at 8 vs. 7.4, 7.8 vs. 2.6 and 6 vs. 0 log10 CFU/mL in 0.2, 0.5, and 1 mM TDCA vs. DCA, respectively. Compared to TDCA, DCA reduced C. perfringens H2S production and the virulence gene expression of asrA1, netB, colA, and virT. BSH activity was observed in Lactobacillus johnsonii and B. longum under anaerobe but not L. johnsonii under 10% CO2 air. After the sequence alignment of bsh from ten bacteria, bsh from B. longum was selected, cloned into pET-BSH, and sequenced at 951 bp. After pET-BSH was transformed in BL21, BSH expression was assessed around 35 kDa using Coomassie staining and verified for His-tag using WB. After the subcloned bsh and amylase signal peptide sequence was inserted into pDR-BSH, B. subtilis was transformed and named B-sub-BSH. The transformation was evaluated using PCR with B. subtilis around 3 kb and B-sub-BSH around 5 kb. Secretory BSH expressed from B-sub-BSH was determined for His-tag using Dot-Blot. Importantly, C. perfringens growth was reduced greater than 59% log10 CFU/mL in the B-sub-BSH media precultured with 1 vs. 0 mM TDCA. In conclusion, TDCA was less potent than DCA against C. perfringens virulence, and recombinant secretory BSH from B-sub-BSH reduced C. perfringens growth, suggesting a new potential intervention against the pathogen-induced chicken NE. Full article
Show Figures

Figure 1

21 pages, 2135 KiB  
Article
Cell-Free Culture Supernatant of Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 Reduces the Pathogenicity of NetB-Positive Clostridium perfringens in a Chicken Intestinal Epithelial Cell Line
by Darshana Kadekar, Andreea Cornelia Udrea, Steffen Yde Bak, Niels Christensen, Kirsty Gibbs, Chong Shen and Marion Bernardeau
Microorganisms 2024, 12(4), 839; https://doi.org/10.3390/microorganisms12040839 - 22 Apr 2024
Cited by 7 | Viewed by 2856
Abstract
The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report [...] Read more.
The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1–UK; CP10–Sweden; 25037–CP01 and CP22–USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05–0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23–62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77–85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host–pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond, 2nd Edition)
Show Figures

Figure 1

14 pages, 2601 KiB  
Article
Effects of Lactobacillus plantarum HW1 on Growth Performance, Intestinal Immune Response, Barrier Function, and Cecal Microflora of Broilers with Necrotic Enteritis
by Peng Chen, Huimin Lv, Weiyong Liu, Yang Wang, Kai Zhang, Chuanyan Che, Jinshan Zhao and Huawei Liu
Animals 2023, 13(24), 3810; https://doi.org/10.3390/ani13243810 - 10 Dec 2023
Cited by 11 | Viewed by 1984
Abstract
The purpose of the study was to investigate the effects of Lactobacillus plantarum HW1 on growth performance, intestinal immune response, barrier function, and cecal microflora of broilers with necrotic enteritis. In total, 180 one-day-old male Cobb 500 broilers were randomly allocated into three [...] Read more.
The purpose of the study was to investigate the effects of Lactobacillus plantarum HW1 on growth performance, intestinal immune response, barrier function, and cecal microflora of broilers with necrotic enteritis. In total, 180 one-day-old male Cobb 500 broilers were randomly allocated into three groups comprising a non-infected control (NC) group, basal diet + necrotic enteritis challenge (NE) group, and basal diet + 4 × 106 CFU/g Lactobacillus plantarum HW1 + necrotic enteritis challenge (HW1) group. Broilers in the NE and HW1 groups were orally given sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. The results showed that the HW1 treatment increased (p < 0.05) the average daily gain of broilers from days 15 to 28 and from days 0 to 28 compared with the NE group. Moreover, the HW1 treatment decreased (p < 0.05) the oocysts per gram of excreta, intestinal lesion scores, ileal interleukin (IL) 1β and tumor necrosis factor α levels, and serum D-lactic acid and diamine oxidase levels, while increasing (p < 0.05) the ileal IL-10 level, thymus index, and protein expressions of ileal occludin and ZO-1. Additionally, the HW1 treatment decreased (p < 0.05) the jejunal and ileal villus height, jejunal villus height/crypt depth value, and cecal harmful bacterial counts (Clostridium perfringens, Salmonella, Escherichia coli, and Staphylococcus aureus), and increased (p < 0.05) the cecal Lactobacillus count. In conclusion, dietary supplementation with 4 × 106 CFU/g Lactobacillus plantarum HW1 could relieve necrotic enteritis infection-induced intestinal injury and improve growth performance in broilers by improving intestinal barrier function and regulating intestinal microbiology. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

15 pages, 2192 KiB  
Article
Potent Bile Acid Microbial Metabolites Modulate Clostridium perfringens Virulence
by Tahrir Alenezi, Ying Fu, Bilal Alrubaye, Thamer Alanazi, Ayidh Almansour, Hong Wang and Xiaolun Sun
Pathogens 2023, 12(10), 1202; https://doi.org/10.3390/pathogens12101202 - 28 Sep 2023
Cited by 5 | Viewed by 2345
Abstract
Clostridium perfringens is a versatile pathogen, inducing diseases in the skin, intestine (such as chicken necrotic enteritis (NE)), and other organs. The classical sign of NE is the foul smell gas in the ballooned small intestine. We hypothesized that deoxycholic acid (DCA) reduced [...] Read more.
Clostridium perfringens is a versatile pathogen, inducing diseases in the skin, intestine (such as chicken necrotic enteritis (NE)), and other organs. The classical sign of NE is the foul smell gas in the ballooned small intestine. We hypothesized that deoxycholic acid (DCA) reduced NE by inhibiting C. perfringens virulence signaling pathways. To evaluate the hypothesis, C. perfringens strains CP1 and wild-type (WT) HN13 and its mutants were cultured with different bile acids, including DCA and isoallolithocholic acid (isoalloLCA). Growth, hydrogen sulfide (H2S) production, and virulence gene expression were measured. Notably, isoalloLCA was more potent in reducing growth, H2S production, and virulence gene expression in CP1 and WT HN13 compared to DCA, while other bile acids were less potent compared to DCA. Interestingly, there was a slightly different impact between DCA and isoalloLCA on the growth, H2S production, and virulence gene expression in the three HN13 mutants, suggesting possibly different signaling pathways modulated by the two bile acids. In conclusion, DCA and isoalloLCA reduced C. perfringens virulence by transcriptionally modulating the pathogen signaling pathways. The findings could be used to design new strategies to prevent and treat C. perfringens-induced diseases. Full article
Show Figures

Figure 1

13 pages, 1675 KiB  
Article
Inclusion of Quillaja Saponin Clarity Q Manages Growth Performance, Immune Response, and Nutrient Transport of Broilers during Subclinical Necrotic Enteritis
by Candice E. C. Blue, Nima K. Emami, Mallory B. White, Staci Cantley and Rami A. Dalloul
Microorganisms 2023, 11(8), 1894; https://doi.org/10.3390/microorganisms11081894 - 27 Jul 2023
Cited by 6 | Viewed by 2423
Abstract
Necrotic enteritis (NE) is an intestinal disease that results in poor performance, inefficient nutrient absorption, and has a devastating economic impact on poultry production. This study evaluated the effects of a saponin-based product (Clarity Q, CQ) during an NE challenge. A total of [...] Read more.
Necrotic enteritis (NE) is an intestinal disease that results in poor performance, inefficient nutrient absorption, and has a devastating economic impact on poultry production. This study evaluated the effects of a saponin-based product (Clarity Q, CQ) during an NE challenge. A total of 1200 male chicks were randomly assigned to four dietary treatments (10 pens/treatment; 30 birds/pen): treatment 1 (NC), a non-medicated corn–soybean basal diet; treatment 2 (PC), NC + 50 g/metric ton (MT) of bacitracin methylene disalicylate (BMD); and treatments 3 (CQ15) and 4 (CQ30), NC + 15 and 30 g/MT, respectively. On the day (d) of placement, birds were challenged by a coccidia vaccine to induce NE. On d 8, 14, 28, and 42, performance parameters were measured. On d 8, three birds/pen were necropsied for NE lesions. On d 8 and d 14, jejunum samples from one bird/pen were collected for mRNA abundance of tight junction proteins and nutrient transporter genes. Data were analyzed in JMP (JMP Pro, 16), and significance (p ≤ 0.05) between treatments was identified by Fisher’s least significant difference (LSD) test. Compared to PC and NC, CQ15 had higher average daily gain (ADG), while CQ30 had lower average daily feed intake (ADFI) and feed conversion ratio (FCR). NE lesions in the duodenum were lower in CQ15 compared to all other treatments. On d 8, mRNA abundance of CLDN1, CLDN5, AMPK, PepT2, GLUT2, and EAAT3 were significantly greater in CQ30 (p < 0.05) compared to both PC and NC. On d 14, mRNA abundance of ZO2 and PepT2 was significantly lower in PC when compared to all treatments, while that of ANXA1, JAM3, and GLUT5 was comparable to CQ15. In summary, adding Clarity Q to broiler diets has the potential to alleviate adverse effects caused by this enteric disease by improving performance, reducing intestinal lesions, and positively modulating the mRNA abundance of various tight junction proteins and key nutrient transporters during peak NE infection. Full article
(This article belongs to the Special Issue Gut Microbiota and Nutrients, 2nd Edition)
Show Figures

Figure 1

19 pages, 5469 KiB  
Article
Effects of Tannic Acid Supplementation on the Intestinal Health, Immunity, and Antioxidant Function of Broilers Challenged with Necrotic Enteritis
by Huiping Xu, Xiaodan Zhang, Peng Li, Yimeng Luo, Jianyang Fu, Lu Gong, Zengpeng Lv and Yuming Guo
Antioxidants 2023, 12(7), 1476; https://doi.org/10.3390/antiox12071476 - 24 Jul 2023
Cited by 12 | Viewed by 3963
Abstract
Clostridium perfringens causes necrotic enteritis (NE) after proliferation in the intestine of poultry, resulting in considerable losses to the poultry industry. This study aimed to investigate the impact of tannic acid on the antioxidant, immunity, and gut health of broilers with NE. In [...] Read more.
Clostridium perfringens causes necrotic enteritis (NE) after proliferation in the intestine of poultry, resulting in considerable losses to the poultry industry. This study aimed to investigate the impact of tannic acid on the antioxidant, immunity, and gut health of broilers with NE. In the experiment, 630 one-day-old Cobb500 male chicks were randomly divided into six treatment groups, with seven replicate cages and with fifteen birds in each cage. The treatment groups were as follows: control group (NC), challenged group (PC), and challenged NE chickens treated with 250, 500, 750, and 1000 mg/kg tannic acid (PTA1, PTA2, PTA3, and PTA4, respectively). To induce NE, coccidia vaccine and Clostridium perfringens were administered on day 19 and days 22–28, respectively. Indexes related to antioxidant, immune, and intestinal health were measured on days 28 and 35. During the infection period, we observed significant increases in fecal water content, D-LA, TNF-α, and malondialdehyde concentrations (p < 0.05). Conversely, significant decreases were noted in chyme pH and in T-AOC, IL-4, and IL-10 concentrations (p < 0.05). The addition of tannic acid exhibited a linear decrease in fecal water content and TNF-α concentration (p < 0.05). Furthermore, tannic acid supplementation resulted in a quadratic curve decrease in D-LA concentration and linear increases in T-AOC, IL-4, and IL-10 (p < 0.05). Cecal microbiological analysis revealed that Ruminococcaceae and Butyricimona were dominant in PTA3. In conclusion, the dietary addition of tannic acid may reduce the negative effects of NE by increasing antioxidant and anti-inflammatory capacity, improving the intestinal barrier, and regulating the intestinal flora. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity—2nd Edition)
Show Figures

Figure 1

16 pages, 2126 KiB  
Article
Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada
by Sara García-Vela, Agustí Martínez-Sancho, Laila Ben Said, Carmen Torres and Ismail Fliss
Pathogens 2023, 12(7), 905; https://doi.org/10.3390/pathogens12070905 - 3 Jul 2023
Cited by 15 | Viewed by 4158
Abstract
Necrotic enteritis (NE) caused by C. perfringens is one of the most common diseases of poultry and results in a huge economic loss to the poultry industry, with resistant clostridial strains being a serious concern and making the treatment difficult. Whole-genome sequencing approaches [...] Read more.
Necrotic enteritis (NE) caused by C. perfringens is one of the most common diseases of poultry and results in a huge economic loss to the poultry industry, with resistant clostridial strains being a serious concern and making the treatment difficult. Whole-genome sequencing approaches represent a good tool to determine resistance profiles and also shed light for a better understanding of the pathogen. The aim of this study was to characterize, at the genomic level, a collection of 20 C. perfringens isolates from poultry affected by NE, giving special emphasis to resistance mechanisms and production of bacteriocins. Antimicrobial resistance genes were found, with the tet genes (associated with tetracycline resistance) being the most prevalent. Interestingly, two isolates carried the erm(T) gene associated with erythromycin resistance, which has only been reported in other Gram-positive bacteria. Twelve of the isolates were toxinotyped as type A and seven as type G. Other virulence factors encoding hyaluronases and sialidases were frequently detected, as well as different plasmids. Sequence types (ST) revealed a high variability of the isolates, finding new allelic combinations. Among the isolates, C. perfringens MLG7307 showed unique characteristics; it presented a toxin combination that made it impossible to toxinotype, and, despite being identified as C. perfringens, it lacked the housekeeping gene colA. Genes encoding bacteriocin BCN5 were found in five isolates even though no antimicrobial activity could be detected in those isolates. The bcn5 gene of three of our isolates was similar to one previously reported, showing two polymorphisms. Concluding, this study provides insights into the genomic characteristics of C. perfringens and a better understanding of this avian pathogen. Full article
Show Figures

Figure 1

Back to TopTop