Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = near lamellar γ-TiAl alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3345 KiB  
Article
Grinding Deformation Behavior of a Lamellar γ-TiAl Alloy
by Jiale Qin, Mengxi Xu, Renci Liu, Yingying Shen, Zhiqiang Shan, Zuohai Zhu, Dong Liu, Yuyou Cui and Rui Yang
Materials 2025, 18(13), 3114; https://doi.org/10.3390/ma18133114 - 1 Jul 2025
Viewed by 319
Abstract
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy [...] Read more.
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy during grinding. The surface lamellae exhibit bending after grinding, with the degree of bending angle φ depending on the orientation of the lamellae. The bending angle φ depends on both the angle between the lamellae interface normal and the grinding direction, and the angle between the lamellae interface normal and the grinding surface normal. The lamellar deformation depth h is primarily governed by the grinding depth. The surface of the sample after grinding can be divided into three distinct layers: a surface fine-equiaxed grain zone, a bending lamella zone, and a near-surface deformation zone. The deformation in the bending lamella zone primarily results from slip bands and stacking faults, whereas the near-surface deformation zone contains extensive dislocation tangles. The results offer fundamental insights into the deformation mechanism of surface lamellar colonies during grinding and provide theoretical guidance for the machining of γ-TiAl alloy components. Full article
(This article belongs to the Special Issue New Advances in High-Temperature Structural Materials)
Show Figures

Figure 1

12 pages, 7576 KiB  
Article
Microstructure Evolution of Extruded TiAl Alloy During Vacuum Isothermal Superplastic Forging Process
by Jintao Li, Xiaopeng Wang, Minyu Gong, Zhenyu Guo and Fantao Kong
Metals 2025, 15(2), 123; https://doi.org/10.3390/met15020123 - 26 Jan 2025
Viewed by 995
Abstract
Vacuum isothermal forging is an ideal method for preparing high-performance TiAl alloy forgings, as it is carried out under the conditions of a uniform temperature field and oxygen isolation. The mechanical properties of TiAl alloys strongly depend on their microstructure, so it is [...] Read more.
Vacuum isothermal forging is an ideal method for preparing high-performance TiAl alloy forgings, as it is carried out under the conditions of a uniform temperature field and oxygen isolation. The mechanical properties of TiAl alloys strongly depend on their microstructure, so it is important to study their microstructure evolution during the forging process to improve their properties. In this study, TiAl alloy forgings with different deformations were produced from the extruded billets by vacuum isothermal superplastic forging under lower temperatures and extremely low strain rate conditions. The results indicate that the streamlined structure in the extruded alloy was destroyed during the forging process. As the deformation increased, the dynamic recrystallization was more fully carried out, leading to a substantial decrease in remnant lamellar colonies and a significant increase in the γ phase, and the microstructure was transformed from nearly lamellar (NL) to near gamma (NG) structure. The proportion of high-angle grain boundaries (HAGB) increased with increasing deformation, while the grain size reduced from 20 μm to 4.6 μm. In addition, the streamlined features and textures exhibited a weakening trend with increasing deformation, leading to a decrease in the ultimate strength from 891 MPa to 722 MPa. To maintain the streamlined characteristics and retain strengthening effects, the forging deformation should not exceed 56.7%. Full article
Show Figures

Figure 1

16 pages, 13205 KiB  
Article
The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Powder Metallurgy Ti-48Al Alloy
by Mengjie Yan, Hongtao Zhang, Fang Yang, Yunwei Gui, Zhijie Han and Huadong Fu
Metals 2024, 14(6), 661; https://doi.org/10.3390/met14060661 - 1 Jun 2024
Cited by 1 | Viewed by 2134
Abstract
Heat treatment is the critical step in achieving a refined microstructure and enhanced mechanical properties of TiAl-based alloys. This study investigated the influence of heat treatment temperature, cooling method, and heat treatment time on the microstructure and mechanical properties of an extruded powder [...] Read more.
Heat treatment is the critical step in achieving a refined microstructure and enhanced mechanical properties of TiAl-based alloys. This study investigated the influence of heat treatment temperature, cooling method, and heat treatment time on the microstructure and mechanical properties of an extruded powder metallurgy Ti-48Al alloy, and achieved the control of fully lamellar fine microstructures and the enhancement of performance through a simple heat treatment, rather than the traditional approach of homogenization followed by heat treatment. The results indicate that the heat treatment temperature determines the type of microstructure, while the cooling rate dictates the lamellar width. As the heat treatment temperature was increased from the two-phase region to the α single-phase region, the microstructure transitioned from duplex to near lamellar, and the alloy strength initially increased and then decreased, influenced by both the lamellar colony ratio and grain size. A rapid cooling rate (water quenching) induces a non-diffusive massive phase transformation, whereas a slow cooling rate (air cooling) gradually forms α2/γ lamellar colonies. Therefore, a suitable heat treatment regime for the powder metallurgy Ti-48Al alloy was determined to be 1340 °C/5 min/air cooling. The microstructure of the alloy was near lamellar, consisting of lamellar colonies approximately 50 μm and a small number of γ equiaxed grains of about 10 μm. Subsequently, the alloy exhibited a room temperature tensile strength of 784 MPa and a yield strength of 763 MPa, representing improvements of 17.0% and 38.7% over the extruded alloy, respectively. This research provides a reference for establishing a heat treatment process for powder metallurgy TiAl alloys. Full article
(This article belongs to the Special Issue Advances in Powder Metallurgy of Light Alloys)
Show Figures

Figure 1

34 pages, 8955 KiB  
Article
On the Microstructure and Properties of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn (at.%) Silicide-Based Alloy—RM(Nb)IC
by Nikos Vellios, Paul Keating and Panos Tsakiropoulos
Metals 2021, 11(11), 1868; https://doi.org/10.3390/met11111868 - 20 Nov 2021
Cited by 13 | Viewed by 2855
Abstract
The microstructure, isothermal oxidation, and hardness of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn alloy and the hardness and Young’s moduli of elasticity of its Nbss and Nb5Si3 were studied. The alloy was selected using the niobium intermetallic composite elaboration (NICE) alloy design methodology. [...] Read more.
The microstructure, isothermal oxidation, and hardness of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn alloy and the hardness and Young’s moduli of elasticity of its Nbss and Nb5Si3 were studied. The alloy was selected using the niobium intermetallic composite elaboration (NICE) alloy design methodology. There was macrosegregation of Ti and Si in the cast alloy. The Nbss, αNb5Si3, γNb5Si3, and HfO2 phases were present in the as-cast or heat-treated alloy plus TiN in the near-the-surface areas of the latter. The vol.% of Nbss was about 80%. There were Ti- and Ti-and-Hf-rich areas in the solid solution and the 5-3 silicide, respectively, and there was a lamellar microstructure of these two phases. The V partitioned to the Nbss, where the solubilities of Al, Cr, Hf, and V increased with increasing Ti concentration. At 700, 800, and 900 °C, the alloy did not suffer from catastrophic pest oxidation; it followed parabolic oxidation kinetics in the former two temperatures and linear oxidation kinetics in the latter, where its mass change was the lowest compared with other Sn-containing alloys. An Sn-rich layer formed in the interface between the scale and the substrate, which consisted of the Nb3Sn and Nb6Sn5 compounds at 900 °C. The latter compound was not contaminated with oxygen. Both the Nbss and Nb5Si3 were contaminated with oxygen, with the former contaminated more severely than the latter. The bulk of the alloy was also contaminated with oxygen. The alloying of the Nbss with Sn increased its elastic modulus compared with Sn-free solid solutions. The hardness of the alloy, its Nbss, and its specific room temperature strength compared favourably with many refractory metal-complex-concentrated alloys (RCCAs). The agreement of the predictions of NICE with the experimental results was satisfactory. Full article
(This article belongs to the Special Issue Advanced Refractory Alloys)
Show Figures

Figure 1

13 pages, 4594 KiB  
Article
Microstructure and Mechanical Properties of High Relative Density γ-TiAl Alloy Using Irregular Pre-Alloyed Powder
by Mengjie Yan, Fang Yang, Boxin Lu, Cunguang Chen, Yanli Sui and Zhimeng Guo
Metals 2021, 11(4), 635; https://doi.org/10.3390/met11040635 - 13 Apr 2021
Cited by 14 | Viewed by 3425
Abstract
Preparing high relative density γ-TiAl alloy by pressure-less sintering at low-cost has always been a challenge. Therefore, a new kind of non-spherical pre-alloyed TiAl powder was prepared by the reaction of TiH2 powder and Al powder at 800 °C to fabricate high-density [...] Read more.
Preparing high relative density γ-TiAl alloy by pressure-less sintering at low-cost has always been a challenge. Therefore, a new kind of non-spherical pre-alloyed TiAl powder was prepared by the reaction of TiH2 powder and Al powder at 800 °C to fabricate high-density Ti-48Al alloy via pressure-less sintering. The oxygen content was controlled to below 1800 ppm by using coarse Al powder (~120 μm). The sintered densities ranged from 92.1% to 97.5% with sintering temperature varying from 1300 °C to 1450 °C. The microstructure of the sintered compact was greatly influenced by the sintering temperature. The as-sintered samples had a near-γ structure at 1350 °C, a duplex structure at 1400 °C, and a nearly lamellar structure at 1450 °C. To achieve full densification, non-capsule hot isostatic pressing was performed on the 1350 °C and 1400 °C sintered samples. As a result, high compressive strengths of 2241 MPa and 1931MPa were obtained, which were higher than the existing Ti-48Al alloys. Full article
Show Figures

Figure 1

20 pages, 9775 KiB  
Article
Investigation on Fatigue Threshold Testing Methods in a Near Lamellar TiAl Alloy
by Shiyuan Wang, Hangyue Li and Paul Bowen
Materials 2019, 12(21), 3487; https://doi.org/10.3390/ma12213487 - 24 Oct 2019
Viewed by 2210
Abstract
The effects of influential fatigue testing factors, including loading schemes (e.g., traditional load shedding and staircase load increasing), morphology of crack starters, and precracking approaches on the near-threshold fatigue crack growth behaviors for a near lamellar γ-TiAl alloy (Ti-45Al-2Mn-2Nb-1B) were investigated at room [...] Read more.
The effects of influential fatigue testing factors, including loading schemes (e.g., traditional load shedding and staircase load increasing), morphology of crack starters, and precracking approaches on the near-threshold fatigue crack growth behaviors for a near lamellar γ-TiAl alloy (Ti-45Al-2Mn-2Nb-1B) were investigated at room temperature and 650 °C. The results showed that the measured fatigue threshold values in lamellar γ-TiAl alloys are very sensitive to the applied testing procedures. For example, the staircase load-increasing method yielded smaller threshold values. When such a load-increasing method was used, the threshold values were measured either from a notch machined by electro-discharge machining or prepared by a compression–compression fatigue loading. Moreover, some differences could be seen with respect to the morphologies of the crack starters. Most of the above influences are associated with the brittle nature of the material and the characteristics of the lamellar microstructures, and closure effects are primarily induced by crack wake roughness or unbroken ligaments. Full article
Show Figures

Figure 1

14 pages, 5461 KiB  
Article
Fractographic Study on Naturally Initiated Short Fatigue Cracks in a Near-Lamellar TiAl Alloy at Room Temperature
by Shiyuan Wang, Yingzi Xi, Hangyue Li and Paul Bowen
Metals 2019, 9(10), 1101; https://doi.org/10.3390/met9101101 - 14 Oct 2019
Cited by 3 | Viewed by 5523
Abstract
Short crack phenomena are considered important for lamellar structures in γ-TiAl alloys and have been thoroughly investigated in the past. However, the short cracks in the previous studies were nearly all introduced artificially. No particular investigations have looked into the initiation of fatigue [...] Read more.
Short crack phenomena are considered important for lamellar structures in γ-TiAl alloys and have been thoroughly investigated in the past. However, the short cracks in the previous studies were nearly all introduced artificially. No particular investigations have looked into the initiation of fatigue short cracks. Therefore, naturally initiated short fatigue cracks at room temperature under two different stress ratios (0.1 and 0.5) were investigated in a near-lamellar γ-TiAl alloy (Ti-45Al-2Mn-2Nb) in this study. The observations show that the fatigue crack initiation behaved differently at low and high stress ratios. At low stress ratio, the specimens failed at lower ultimate stress levels (σmax = 450 and 475 MPa), and the crack initiated from the cluster of interlamellar fracture near mode-I orientation or stress concentration areas. At the higher stress ratio, the specimens failed at higher but consistent stress levels (σmax = 560 and 570 MPa), and in the specimen crack initiation areas, the interlamellar fractures were still the primary fracture mode, whereas some were found at tilted angles due to shear deformation. The results suggest that short fatigue cracks can naturally initiate in lamellar γ-TiAl alloys, thus attention should be paid to their microstructure design, surface finishing and cleanliness. Full article
Show Figures

Figure 1

15 pages, 5370 KiB  
Article
Microstructural Evolution and Refinement Mechanism of a Beta–Gamma TiAl-Based Alloy during Multidirectional Isothermal Forging
by Kai Zhu, Shoujiang Qu, Aihan Feng, Jingli Sun and Jun Shen
Materials 2019, 12(15), 2496; https://doi.org/10.3390/ma12152496 - 6 Aug 2019
Cited by 12 | Viewed by 3796
Abstract
Multidirectional isothermal forging (MDIF) was used on a Ti-44Al-4Nb-1.5Cr-0.5Mo-0.2B (at. %) alloy to obtain a crack-free pancake. The microstructural evolution, such as dynamic recovery and recrystallization behavior, were investigated using electron backscattered diffraction and transmission electron microscopy methods. The MDIF broke down the [...] Read more.
Multidirectional isothermal forging (MDIF) was used on a Ti-44Al-4Nb-1.5Cr-0.5Mo-0.2B (at. %) alloy to obtain a crack-free pancake. The microstructural evolution, such as dynamic recovery and recrystallization behavior, were investigated using electron backscattered diffraction and transmission electron microscopy methods. The MDIF broke down the initial near-lamellar microstructure and produced a refined and homogeneous duplex microstructure. γ grains were effectively refined from 3.6 μm to 1.6 μm after the second step of isothermal forging. The ultimate tensile strength at ambient temperature and the elongation at 800 °C increased significantly after isothermal forging. β/B2→α2 transition occurred during intermediate annealing, and α2 + γ→β/B2 transition occurred during the second step of isothermal forging. The refinement mechanism of the first-step isothermal forging process involved the conversion of the lamellar structure and discontinuous dynamic recrystallization (DDRX) of γ grains in the original mixture-phase region. The lamellar conversion included continuous dynamic recrystallization and DDRX of the γ laths and bugling of the γ phase. DDRX behavior of γ grains dominated the refinement mechanism of the second step of isothermal forging. Full article
Show Figures

Figure 1

12 pages, 3414 KiB  
Article
Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering
by David Wimler, Janny Lindemann, Helmut Clemens and Svea Mayer
Materials 2019, 12(9), 1523; https://doi.org/10.3390/ma12091523 - 9 May 2019
Cited by 21 | Viewed by 4206
Abstract
Intermetallic γ-TiAl based alloys are innovative lightweight structural high-temperature materials used in aerospace and automotive applications due to already established industrial-scale processing routes, like casting and hot-working, i.e., forging. A promising alternative method of production, regarding manufacturing of near net-shape components, goes over [...] Read more.
Intermetallic γ-TiAl based alloys are innovative lightweight structural high-temperature materials used in aerospace and automotive applications due to already established industrial-scale processing routes, like casting and hot-working, i.e., forging. A promising alternative method of production, regarding manufacturing of near net-shape components, goes over the powder metallurgy route, more precisely by densification of TiAl powder via spark plasma sintering. In this study, gas atomized powder from the 4th generation TNM alloy, Ti-43.5Al-4Nb-1Mo-0.1B (in at.%), was densified and the microstructure was investigated by means of electron microscopy and X-ray diffraction. The sintered microstructure exhibits lamellar α2-Ti3Al /γ-TiAl colonies surrounded by globular γ- and ordered βo-TiAl phase. The coarse lamellar spacing stems from the low cooling rate after densification at sintering temperature. Against this background, subsequent heat treatments were designed to decrease the lamellar widths by a factor of ten. Accompanying, tensile tests and creep experiments at different temperatures revealed that the modified almost fully lamellar microstructure is enhanced in strength and creep resistance, where a small volume fraction of globular γ-phase provides ductility at ambient temperatures. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

Back to TopTop