Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = natural hydrocarbon seepages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2947 KiB  
Review
Assessing the Interaction Between Geologically Sourced Hydrocarbons and Thermal–Mineral Groundwater: An Overview of Methodologies
by Vasiliki Stavropoulou, Eleni Zagana, Christos Pouliaris and Nerantzis Kazakis
Water 2025, 17(13), 1940; https://doi.org/10.3390/w17131940 - 28 Jun 2025
Viewed by 598
Abstract
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as [...] Read more.
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as dissolution, adsorption, biodegradation, and redox reactions and can also affect groundwater chemistry in terms of pH, redox potential, dissolved organic carbon, and trace element concentrations. Accurate determination and identification of hydrocarbon contaminants requires advanced analytical methods like gas chromatography, GC–MS, and fluorescence spectroscopy, complemented with isotopic analysis and microbial tracers, which provide insights into sources of contamination and biodegradation pathways. The presence of hydrocarbons in groundwater is a matter of environmental concern but can also valuable data for petroleum exploration, tracing subsurface reservoirs and seepage pathways. This paper refers to the basic need for geochemical investigations combined with advanced detection techniques for successful regulation of thermal–mineral groundwater quality. This contributes towards successful sustainable hydrocarbon resource exploration and water resource conservation, with emphasis on the relationship between groundwater quality and hydrocarbon exploration. The study points out the significance of continuous observation of thermal mineral waters to identify their connection with the specific hydrocarbons of each study area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 10421 KiB  
Article
Micropore Structure of Deep Shales from the Wufeng–Longmaxi Formations, Southern Sichuan Basin, China: Insight into the Vertical Heterogeneity and Controlling Factors
by Hongzhi Yang, Shengxian Zhao, Bo Li, Yong Liu, Majia Zheng, Jian Zhang, Yongyang Liu, Gaoxiang Wang, Meixuan Yin and Lieyan Cao
Minerals 2023, 13(10), 1347; https://doi.org/10.3390/min13101347 - 23 Oct 2023
Cited by 3 | Viewed by 1396
Abstract
The microscopic pore throat structure of shale reservoir rocks directly affects the reservoir seepage capacity. The occurrence and flow channels of shale gas are mainly micron–nanometer pore throats. Therefore, to clarify the microstructural characteristics and influencing factors of the deep organic-rich shales, a [...] Read more.
The microscopic pore throat structure of shale reservoir rocks directly affects the reservoir seepage capacity. The occurrence and flow channels of shale gas are mainly micron–nanometer pore throats. Therefore, to clarify the microstructural characteristics and influencing factors of the deep organic-rich shales, a study is conducted on the marine shale from the Upper Silurian to Lower Ordovician Wufeng–Longmaxi Formation in the southern Sichuan Basin. Petrographic lithofacies division is carried out in combination with petro-mineralogical characteristics, and a high-resolution scanning electron microscope, low-temperature nitrogen and low-temperature carbon dioxide adsorption, and micron-computed tomography are used to characterize the mineral composition and pore structure qualitatively and quantitatively, upon which the influencing factors of the microstructure are further analyzed. The results show that with the increase in burial depth, the total organic carbon content and siliceous mineral content decrease in the Wufeng formation to Long-11 subsection deep shale, while clay mineral content increases, which corresponds to the change in sedimentary environment from anoxic to oxidizing environment. Unexpectedly, the total pore volume of deep shale does not decrease with the increase in burial depth but increases first and then decreases. Using total organic carbon (TOC), siliceous mineral content showed a good correlation with total pore volume and specific surface area, with correlation coefficients greater than 0.7, confirming the predominant role of these two factors in controlling the pore structure of deep shales. This is mainly because the Longmaxi shale is already in the late diagenetic stage, and organic matter pores are generated in large quantities. Clay minerals have a negative correlation with the total pore volume of shale, and the correlation coefficient is 0.7591. It could be that clay minerals are much more flexible and are easily deformed to block the pores under compaction. In addition, the longitudinal heterogeneity of the deep shale reservoir structure in southern Sichuan is also controlled by the thermal effect of the Emei mantle plume on hydrocarbon generation of organic matter and the development of natural microfractures promoted by multistage tectonic movement. Overall, the complex microstructure in the deep shales of the Longmaxi Formation in the southern Sichuan Basin is jointly controlled by multiple effects, and the results of this research provide strong support for the benefit development of deep shale gas in southern Sichuan Basin. Full article
Show Figures

Figure 1

27 pages, 155599 KiB  
Article
Paragenesis and Formation Mechanism of the Dolomite-Mottled Limestone Reservoir of Ordovician Ma4 Member, Ordos Basin
by Zeguang Yang, Aiguo Wang, Liyong Fan, Zhanrong Ma, Xiaorong Luo, Xinghui Ning and Kun Meng
Minerals 2023, 13(9), 1172; https://doi.org/10.3390/min13091172 - 6 Sep 2023
Cited by 2 | Viewed by 1930
Abstract
Despite the discovery of high-producing natural gas reservoirs in the low-permeability dolomite-mottled limestone (DML) reservoir of the fourth Member (Ma4) of the Majiagou Formation in the Ordos Basin, the current understanding of the processes responsible for reservoir formation are still superficial, which extremely [...] Read more.
Despite the discovery of high-producing natural gas reservoirs in the low-permeability dolomite-mottled limestone (DML) reservoir of the fourth Member (Ma4) of the Majiagou Formation in the Ordos Basin, the current understanding of the processes responsible for reservoir formation are still superficial, which extremely restricts the effectiveness of deep petroleum exploration and development in the basin. Therefore, this study analyzed the paragenesis process of the DML reservoir through systematic petrographic and geochemical measurements. The DML consists of burrows and matrix. The burrows are mainly filled with dolomite with a small amount of micrite, calcite cement, and solid bitumen. The matrix mainly consists of wakestone or mudstone. The DML has experienced multiple diagenetic events, including seepage-reflux dolomitization, compaction, calcite cement CaI cementation, micrite recrystallization, dissolution, hydrocarbon charging, calcite cement CaII cementation, and dolomite progressive recrystallization. Dolomitization is critical to the DML reservoir formation. The pore created by dolomitization is the hydrocarbon-migrated pathway and storage space. Due to the difference in Mg2+-rich fluid supply, the degree of dolomitization decreases from west to east, which causes the difference in diagenetic evolution of the western and eastern parts of the study area. The high dolomitization degree led to strong anti-compaction ability in the west, contrary to the east. Thus, the reservoir quality of the west is better than the east. Full article
Show Figures

Figure 1

16 pages, 1943 KiB  
Article
Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site
by Xinyang Liu and Yu Wang
Sustainability 2022, 14(24), 16948; https://doi.org/10.3390/su142416948 - 17 Dec 2022
Cited by 9 | Viewed by 3558
Abstract
Landfills are a potential source of local environmental pollution of all kinds, and the gradual destruction of seepage-proof structures in informal landfills will lead to contamination of the surrounding soil and groundwater environment. In this study, an informal landfill site in eastern China [...] Read more.
Landfills are a potential source of local environmental pollution of all kinds, and the gradual destruction of seepage-proof structures in informal landfills will lead to contamination of the surrounding soil and groundwater environment. In this study, an informal landfill site in eastern China is used as the research object. Using technologies such as unmanned vessels and monitoring well imaging to delineate the amount and distribution of polluting media, sampling of the surrounding soil, sediment, groundwater, and surface water for testing, analysis, and evaluation is carried out visually and finely for heavy metals, petroleum hydrocarbons, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and other indicators. The test results show that volatile phenols are the main contaminant species in the shallow groundwater, chlorinated hydrocarbons and benzene were prevalent in the deep groundwater, hexachlorobenzene and lead in the surface soil, and di(2-Ethylhexyl) phthalate in the deep soil (5.5 m), with a maximum exceedance of 1.24 times. Nearly 10 years have passed since the waste dumping incident at the landfill, but characteristic contaminants are still detected in the topsoil of the dumping area, which shows the long-term nature of the environmental impact of illegal dumping on the site. The study recommends that when developing a comprehensive remediation plan, the persistence of the environmental impact of the waste should be considered and appropriate remediation measures should be screened. Full article
Show Figures

Figure 1

12 pages, 3918 KiB  
Article
Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale
by Shansi Tian, Yuanling Guo, Zhentao Dong and Zhaolong Li
Fractal Fract. 2022, 6(11), 675; https://doi.org/10.3390/fractalfract6110675 - 15 Nov 2022
Cited by 14 | Viewed by 2115
Abstract
Pore structure is one of the important parameters for evaluating reservoirs, critical in controlling the storage capacity and transportation properties of hydrocarbons. The conventional pore characterization method cannot fully reflect the pore network morphology. The edge-threshold automatic processing method is applied to extract [...] Read more.
Pore structure is one of the important parameters for evaluating reservoirs, critical in controlling the storage capacity and transportation properties of hydrocarbons. The conventional pore characterization method cannot fully reflect the pore network morphology. The edge-threshold automatic processing method is applied to extract and quantify pore structures in shale scanning electron microscope (SEM) images. In this manuscript, a natural lacustrine oil-prone shale in the Qingshankou Formation of Songliao Basin is used as the research object. Based on FE-SEM, a high-resolution cross-section of shale was obtained to analyze the microstructure of pores and characterize the heterogeneity of pores by multifractal theory. The stringent representative elementary area (REA) of the SEM cross-section was determined to be 35 × 35. Four pore types were found and analyzed in the stringent REA: organic pores, organic cracks, inorganic pores, inorganic cracks. The results showed that inorganic pores and cracks were the main pore types and accounted for 87.8% of the total pore area, and organic cracks were of the least importance in the Qingshankou shale. Inorganic pores were characterized as the simplest pore morphologies, with the largest average MinFeret diameter, and the least heterogeneity. Moreover, the inorganic cracks had a long extension distance and stronger homogeneity, which could effectively connect the inorganic pores. Organic pores were found to be the most complex for pore structure, with the least average MinFeret diameter, but the largest heterogeneity. In addition, the extension distance of the organic cracks was short and could not effectively connect the organic pore. We concluded that inorganic pores and cracks are a key factor in the storage and seepage capacity of the Qingshankou shale. Organic pores and cracks provide limited storage space. Full article
(This article belongs to the Special Issue Fractal Analysis and Fractal Dimension in Materials Chemistry)
Show Figures

Figure 1

20 pages, 5616 KiB  
Article
Distribution, Magnitude, and Variability of Natural Oil Seeps in the Gulf of Mexico
by Carrie O’Reilly, Mauricio Silva, Samira Daneshgar Asl, William P. Meurer and Ian R. MacDonald
Remote Sens. 2022, 14(13), 3150; https://doi.org/10.3390/rs14133150 - 30 Jun 2022
Cited by 11 | Viewed by 3788
Abstract
The Gulf of Mexico is a hydrocarbon-rich region characterized by the presence of floating oil slicks from persistent natural hydrocarbon seeps, which are reliably captured by synthetic aperture radar (SAR) satellite imaging. Improving the state of knowledge of hydrocarbon seepage in the Gulf [...] Read more.
The Gulf of Mexico is a hydrocarbon-rich region characterized by the presence of floating oil slicks from persistent natural hydrocarbon seeps, which are reliably captured by synthetic aperture radar (SAR) satellite imaging. Improving the state of knowledge of hydrocarbon seepage in the Gulf of Mexico improves the understanding and quantification of natural seepage rates in North America. We used data derived from SAR scenes collected over the Gulf of Mexico from 1978 to 2018 to locate oil slick origins (OSOs), cluster the OSOs into discrete seep zones, estimate the flux of individual seepage events, and calculate seep recurrence rates. In total, 1618 discrete seep zones were identified, primarily concentrated in the northern Gulf of Mexico within the Louann salt formation, with a secondary concentration in the Campeche region. The centerline method was used to estimate flux based on the drift length of the slick (centerline), the slick area, and average current and wind speeds. Flux estimates from the surface area of oil slicks varied geographically and temporally; on average, seep zones exhibited an 11% recurrence rate, suggesting possible intermittent discharge from natural seeps. The estimated average instantaneous flux for natural seeps is 9.8 mL s−1 (1.9 × 103 bbl yr−1), with an annual discharge of 1.73–6.69 × 105 bbl yr−1 (2.75–10.63 × 104 m3 yr−1) for the entire Gulf of Mexico. The temporal variability of average flux suggests a potential decrease following 1995; however, analysis of flux in four lease blocks indicates that flux has not changed substantially over time. It is unlikely that production activities in the Gulf of Mexico impact natural seepage on a human timescale. Of the 1618 identified seep zones, 1401 are located within U.S. waters, with 70 identified as having flux and recurrence rates significantly higher than the average. Seep zones exhibiting high recurrence rates are more likely to be associated with positive seismic anomalies. Many of the methods developed for this study can be applied to SAR-detected oil slicks in other marine settings to better assess the magnitude of global hydrocarbon seepage. Full article
(This article belongs to the Special Issue Remote Sensing Observations for Oil Spill Monitoring)
Show Figures

Graphical abstract

26 pages, 8172 KiB  
Article
Measuring Floating Thick Seep Oil from the Coal Oil Point Marine Hydrocarbon Seep Field by Quantitative Thermal Oil Slick Remote Sensing
by Ira Leifer, Christopher Melton, William J. Daniel, David M. Tratt, Patrick D. Johnson, Kerry N. Buckland, Jae Deok Kim and Charlotte Marston
Remote Sens. 2022, 14(12), 2813; https://doi.org/10.3390/rs14122813 - 11 Jun 2022
Cited by 9 | Viewed by 2844
Abstract
Remote sensing techniques offer significant potential for generating accurate thick oil slick maps critical for marine oil spill response. However, field validation and methodology assessment challenges remain. Here, we report on an approach to leveraging oil emissions from the Coal Oil Point (COP) [...] Read more.
Remote sensing techniques offer significant potential for generating accurate thick oil slick maps critical for marine oil spill response. However, field validation and methodology assessment challenges remain. Here, we report on an approach to leveraging oil emissions from the Coal Oil Point (COP) natural marine hydrocarbon seepage offshore of southern California, where prolific oil seepage produces thick oil slicks stretching many kilometers. Specifically, we demonstrate and validate a remote sensing approach as part of the Seep Assessment Study (SAS). Thick oil is sufficient for effective mitigation strategies and is set at 0.15 mm. The brightness temperature of thick oil, TBO, is warmer than oil-free seawater, TBW, allowing segregation of oil from seawater. High spatial-resolution airborne thermal and visible slick imagery were acquired as part of the SAS; including along-slick “streamer” surveys and cross-slick calibration surveys. Several cross-slick survey-imaged short oil slick segments that were collected by a customized harbor oil skimmer; termed “collects”. The brightness temperature contrast, ΔTB (TBOTBW), for oil pixels (based on a semi-supervised classification of oil pixels) and oil thickness, h, from collected oil for each collect provided the empirical calibration of ΔTB(h). The TB probability distributions provided TBO and TBW, whereas a spatial model of TBW provided ΔTB for the streamer analysis. Complicating TBW was the fact that streamers were located at current shears where two water masses intersect, leading to a TB discontinuity at the slick. This current shear arose from a persistent eddy down current of the COP that provides critical steering of oil slicks from the Coal Oil Point. The total floating thick oil in a streamer observed on 23 May and a streamer observed on 25 May 2016 was estimated at 311 (2.3 bbl) and 2671 kg (20 bbl) with mean linear floating oil 0.14 and 2.4 kg m−1 with uncertainties by Monte Carlo simulations of 25% and 7%, respectively. Based on typical currents, the average of these two streamers corresponds to 265 g s−1 (~200 bbl day−1) in a range of 60–340 bbl day−1, with significant short-term temporal variability that suggests slug flow for the seep oil emissions. Given that there are typically four or five streamers, these data are consistent with field emissions that are higher than the literature estimates. Full article
(This article belongs to the Special Issue Advances in Oil Spill Remote Sensing)
Show Figures

Graphical abstract

13 pages, 2053 KiB  
Article
Geospatial Synthesis of Biogeochemical Attributions of Porphyrins to Oil Pollution in Marine Sediments of the Gulf of México
by Francisco Muñoz-Arriola and José Vinicio Macías-Zamora
Geosciences 2022, 12(2), 77; https://doi.org/10.3390/geosciences12020077 - 6 Feb 2022
Cited by 3 | Viewed by 2602
Abstract
Porphyrins are highly persistent in the environment and represent a helpful biogeochemical attribute to assess the spatial distribution of the effects of oil spills on ecosystems and their resilience. In areas prone to natural and human-originated oil spills, the measurement of VO– and [...] Read more.
Porphyrins are highly persistent in the environment and represent a helpful biogeochemical attribute to assess the spatial distribution of the effects of oil spills on ecosystems and their resilience. In areas prone to natural and human-originated oil spills, the measurement of VO– and nickel–porphyrins in marine–sediment samples can identify the effects of oil pollution across spatiotemporal scales. The goal is to explore whether or not these compounds can be useful indicators of the geospatial attributions of oil contamination in the surficial sediments. We hypothesize that the geospatial gradients of porphyrins in marine sediments from petroleum spills and seepage activities—related to traditional indices of oil pollution, such as heavy metals and polycyclic aromatic hydrocarbons—can be identified in small sediment samples and concentrations. The objectives are two-fold: (1) extract and measure VO– and nickel–porphyrins from small marine sediment samples using high-pressure liquid chromatography, and (2) use cluster analysis and the canonical correlation analysis to identify the biogeochemical and geospatial attributions between VO–porphyrins and another index of oil pollution extracted and analyzed from sediments of the Campeche Shelf, in the Gulf of Mexico. High-pressure liquid chromatography with diode array detectors, two inverse phase columns and an isocratic separation method, was used to analyze the marine sediments. We identified 5.1 ng/g to 240.3 ng/g to VO–porphyrins concentrations with gradients toward areas identified as potential sources of oil pollution. Similar patterns were present for nickel–porphyrins, with values two orders of magnitude below those for the VO–porphyrins. The results represent a valuable opportunity to measure the biomarkers associated with oil pollution in small sediment samples. Furthermore, the results can find the potential drawbacks of benthic ecosystem resilience. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

17 pages, 10474 KiB  
Article
Velocity Structure Revealing a Likely Mud Volcano off the Dongsha Island, the Northern South China Sea
by Yuning Yan, Jianping Liao, Junhui Yu, Changliang Chen, Guangjian Zhong, Yanlin Wang and Lixin Wang
Energies 2022, 15(1), 195; https://doi.org/10.3390/en15010195 - 28 Dec 2021
Cited by 12 | Viewed by 2926
Abstract
The Dongsha Island (DS) is located in the mid-northern South China Sea continental margin. The waters around it are underlain by the Chaoshan Depression, a relict Mesozoic sedimentary basin, blanketed by thin Cenozoic sediments but populated with numerous submarine hills with yet less-known [...] Read more.
The Dongsha Island (DS) is located in the mid-northern South China Sea continental margin. The waters around it are underlain by the Chaoshan Depression, a relict Mesozoic sedimentary basin, blanketed by thin Cenozoic sediments but populated with numerous submarine hills with yet less-known nature. A large hill, H110, 300 m high, 10 km wide, appearing in the southeast to the Dongsha Island, is crossed by an ocean bottom seismic and multiple channel seismic surveying lines. The first arrival tomography, using ocean bottom seismic data, showed two obvious phenomena below it: (1) a low-velocity (3.3 to 4 km/s) zone, with size of 20 × 3 km2, centering at ~4.5 km depth and (2) an underlying high-velocity (5.5 to 6.3 km/s) zone of comparable size at ~7 km depth. MCS profiles show much-fragmented Cenozoic sequences, covering a wide chaotic reflection zone within the Mesozoic strata below hill H110. The low-velocity zone corresponds to the chaotic reflection zone and can be interpreted as of highly-fractured and fluid-rich Mesozoic layers. Samples dredged from H110 comprised of illite-bearing authigenic carbonate nodules and rich, deep-water organisms are indicative of hydrocarbon seepage from deep source. Therefore, H110 can be inferred as a mud volcano. The high-velocity zone is interpreted as of magma intrusion, considering that young magmatism was found enhanced over the southern CSD. Furthermore, the origin of H110 can be speculated as thermodynamically driven, i.e., magma from the depths intrudes into the thick Mesozoic strata and promotes petroleum generation, thus, driving mud volcanism. Mud volcanism at H110 and the occurrence of a low-velocity zone below it likely indicates the existence of Mesozoic hydrocarbon reservoir, which is in favor of the petroleum exploration. Full article
(This article belongs to the Collection The State of the Art of Geo-Energy Technology in China)
Show Figures

Figure 1

16 pages, 3090 KiB  
Article
Natural Surface Hydrocarbons and Soil Faunal Biodiversity: A Bioremediation Perspective
by Sara Remelli, Pietro Rizzo, Fulvio Celico and Cristina Menta
Water 2020, 12(9), 2358; https://doi.org/10.3390/w12092358 - 22 Aug 2020
Cited by 9 | Viewed by 3687
Abstract
Hydrocarbon pollution threatens aquatic and terrestrial ecosystems globally, but soil fauna in oil-polluted soils has been insufficiently studied. In this research, soil hydrocarbon toxicity was investigated in two natural oil seepage soils in Val D’Agri (Italy) using two different approaches: (i) toxicological tests [...] Read more.
Hydrocarbon pollution threatens aquatic and terrestrial ecosystems globally, but soil fauna in oil-polluted soils has been insufficiently studied. In this research, soil hydrocarbon toxicity was investigated in two natural oil seepage soils in Val D’Agri (Italy) using two different approaches: (i) toxicological tests with Folsomia candida (Collembola) and Eisenia fetida (Oligochaeta) and (ii) analysis of abundance and composition of micro- and meso-fauna. Soil sampling was done along 20 m-transepts starting from the natural oil seepages. Toxicological testing revealed that no exemplars of F. candida survived, whereas specimens of E. fetida not only survived but also increased in weight in soils with higher PAH concentrations, although no reproduction was observed. Analysis on microfauna showed that Nematoda was the most abundant group, with distance from seepages not affecting its abundance. Arthropoda results showed that Acarina, Collembola and Diptera larvae represented the most abundant taxa. The highest divergence in community composition was found between soils situated near seepages and at 5 m and 10 m distance. Arthropoda taxa numbers, total abundance and Acarina were lower in soils with high PAH concentration, while Diptera larvae were not significantly affected. Earthworms, together with Nematoda and Diptera larvae, could therefore represent ideal candidates in PAH degradation studies. Full article
Show Figures

Figure 1

24 pages, 17531 KiB  
Article
Satellite Survey of Inner Seas: Oil Pollution in the Black and Caspian Seas
by Marina Mityagina and Olga Lavrova
Remote Sens. 2016, 8(10), 875; https://doi.org/10.3390/rs8100875 - 23 Oct 2016
Cited by 56 | Viewed by 13527
Abstract
The paper discusses our studies of oil pollution in the Black and Caspian Seas. The research was based on a multi-sensor approach on satellite survey data. A combined analysis of oil film signatures in satellite synthetic aperture radar (SAR) and optical imagery was [...] Read more.
The paper discusses our studies of oil pollution in the Black and Caspian Seas. The research was based on a multi-sensor approach on satellite survey data. A combined analysis of oil film signatures in satellite synthetic aperture radar (SAR) and optical imagery was performed. Maps of oil spills detected in satellite imagery of the whole aquatic area of the Black Sea and the Middle and the Southern Caspian Sea are created. Areas of the heaviest pollution are outlined. It is shown that the main types of sea surface oil pollution are ship discharges and natural marine hydrocarbon seepages. For each type of pollution and each sea, regions of regular pollution occurrence were determined, polluted areas were estimated, and specific manifestation features were revealed. Long-term observations demonstrate that in recent years, illegal wastewater discharges into the Black Sea have become very common, which raises serious environmental issues. Manifestations of seabed hydrocarbon seepages were also detected in the Black Sea, primarily in its eastern part. The patterns of surface oil pollution of the Caspian Sea differ considerably from those observed in the Black Sea. They are largely determined by presence of big seabed oil and gas deposits. The dependence of surface oil SAR signatures on wind/wave conditions is discussed. The impact of dynamic and circulation processes on oil films drift and spread is investigated. A large amount of the data available allowed us to make some generalizations and obtain statistically significant results on spatial and temporal variability of various surface film manifestations.The examples and numerical data we provide on ship spills and seabed seepages reflect the influence of the pollution on the sea environment. Full article
Show Figures

Graphical abstract

Back to TopTop