Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nanovalves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2263 KB  
Article
Morphology of Polymer Brushes in the Presence of Attractive Nanoparticles: Effects of Temperature
by Afshin Eskandari Nasrabad, Rozita Laghaei and Rob D. Coalson
Int. J. Mol. Sci. 2023, 24(1), 832; https://doi.org/10.3390/ijms24010832 - 3 Jan 2023
Cited by 3 | Viewed by 3582
Abstract
We study the role of temperature on the structure of pure polymer brushes and their mixture with attractive nanoparticles in flat and cylindrical geometries. It has previously been established that the addition of such nanoparticles causes the polymer brush to collapse and the [...] Read more.
We study the role of temperature on the structure of pure polymer brushes and their mixture with attractive nanoparticles in flat and cylindrical geometries. It has previously been established that the addition of such nanoparticles causes the polymer brush to collapse and the intensity of the collapse depends on the attraction strength, the nanoparticle diameter, and the grafting density. In this work, we carry out molecular dynamics simulation under good solvent conditions to show how the collapse transition is affected by the temperature, for both plane grafted and inside-cylinder grafted brushes. We first examine the pure brush morphology and verify that the brush height is insensitive to temperature changes in both planar and cylindrical geometries, as expected for a polymer brush in a good solvent. On the other hand, for both system geometries, the brush structure in the presence of attractive nanoparticles is quite responsive to temperature changes. Generally speaking, for a given nanoparticle concentration, increasing the temperature causes the brush height to increase. A brush which contracts when nanoparticles are added eventually swells beyond its pure brush height as the system temperature is increased. The combination of two easily controlled external parameters, namely, concentration of nanoparticles in solution and temperature, allows for sensitive and reversible adjustment of the polymer brush height, a feature which could be exploited in designing smart polymer devices. Full article
(This article belongs to the Special Issue Modern Trends in Polymer Brushes: Experiment, Theory and Simulation)
Show Figures

Figure 1

17 pages, 3291 KB  
Article
Inflammation-Responsive Nanovalves of Polymer-Conjugated Dextran on a Hole Array of Silicon Substrate for Controlled Antibiotic Release
by Ai-Wei Lee, Pao-Lung Chang, Shien-Kuei Liaw, Chien-Hsing Lu and Jem-Kun Chen
Polymers 2022, 14(17), 3611; https://doi.org/10.3390/polym14173611 - 1 Sep 2022
Cited by 1 | Viewed by 2203
Abstract
Poly(methacrylic acid) (PMAA) brushes were tethered on a silicon surface possessing a 500-nm hole array via atom transfer radical polymerization after the modification of the halogen group. Dextran-biotin (DB) was sequentially immobilized on the PMAA chains to obtain a P(MAA-DB) brush surrounding the [...] Read more.
Poly(methacrylic acid) (PMAA) brushes were tethered on a silicon surface possessing a 500-nm hole array via atom transfer radical polymerization after the modification of the halogen group. Dextran-biotin (DB) was sequentially immobilized on the PMAA chains to obtain a P(MAA-DB) brush surrounding the hole edges on the silicon surface. After loading antibiotics inside the holes, biphenyl-4,4′-diboronic acid (BDA) was used to cross-link the P(MAA-DB) chains through the formation of boronate esters to cap the hole and block the release of the antibiotics. The boronate esters were disassociated with reactive oxygen species (ROS) to open the holes and release the antibiotics, thus indicating a reversible association. The total amount of drug inside the chip was approximately 52.4 μg cm−2, which could be released at a rate of approximately 1.6 μg h−1 cm−2 at a ROS concentration of 10 nM. The P(MAA-DB) brush-modified chip was biocompatible without significant toxicity toward L929 cells during the antibiotic release. The inflammation-triggered antibiotic release system based on a subcutaneous implant chip not only exhibits excellent efficacy against bacteria but also excellent biocompatibility, recyclability, and sensitivity, which can be easily extended to other drug delivery systems for numerous biomedical applications without phagocytosis- and metabolism-related issues. Full article
Show Figures

Figure 1

36 pages, 3296 KB  
Review
Cyclodextrin-Modified Nanomaterials for Drug Delivery: Classification and Advances in Controlled Release and Bioavailability
by Daniel Andrés Real, Karen Bolaños, Josefina Priotti, Nicolás Yutronic, Marcelo J. Kogan, Rodrigo Sierpe and Orlando Donoso-González
Pharmaceutics 2021, 13(12), 2131; https://doi.org/10.3390/pharmaceutics13122131 - 10 Dec 2021
Cited by 88 | Viewed by 8189
Abstract
In drug delivery, one widely used way of overcoming the biopharmaceutical problems present in several active pharmaceutical ingredients, such as poor aqueous solubility, early instability, and low bioavailability, is the formation of inclusion compounds with cyclodextrins (CD). In recent years, the use of [...] Read more.
In drug delivery, one widely used way of overcoming the biopharmaceutical problems present in several active pharmaceutical ingredients, such as poor aqueous solubility, early instability, and low bioavailability, is the formation of inclusion compounds with cyclodextrins (CD). In recent years, the use of CD derivatives in combination with nanomaterials has shown to be a promising strategy for formulating new, optimized systems. The goals of this review are to give in-depth knowledge and critical appraisal of the main CD-modified or CD-based nanomaterials for drug delivery, such as lipid-based nanocarriers, natural and synthetic polymeric nanocarriers, nanosponges, graphene derivatives, mesoporous silica nanoparticles, plasmonic and magnetic nanoparticles, quantum dots and other miscellaneous systems such as nanovalves, metal-organic frameworks, Janus nanoparticles, and nanofibers. Special attention is given to nanosystems that achieve controlled drug release and increase their bioavailability during in vivo studies. Full article
(This article belongs to the Special Issue Cyclodextrins in Drug Delivery)
Show Figures

Graphical abstract

14 pages, 4944 KB  
Article
Multi-Responsive Nanocarriers Based on β-CD-PNIPAM Star Polymer Coated MSN-SS-Fc Composite Particles
by Feng Guo, Guiying Li, Songmei Ma, Hengquan Zhou and Xinyi Chen
Polymers 2019, 11(10), 1716; https://doi.org/10.3390/polym11101716 - 19 Oct 2019
Cited by 27 | Viewed by 5256
Abstract
A temperature, glutathione (GSH), and H2O2 multi-responsive composite nanocarrier (MSN-SS-Fc@β-CD-PNIPAM) based on β-cyclodextrin-poly(N-isopropylacrylamide) (β-CD-PNIPAM) star polymer capped ferrocene modified mesoporous silica nanoparticles (MSN-SS-Fc) was successfully prepared. The surface of the mesoporous silica was first modified by ferrocene (Fc) [...] Read more.
A temperature, glutathione (GSH), and H2O2 multi-responsive composite nanocarrier (MSN-SS-Fc@β-CD-PNIPAM) based on β-cyclodextrin-poly(N-isopropylacrylamide) (β-CD-PNIPAM) star polymer capped ferrocene modified mesoporous silica nanoparticles (MSN-SS-Fc) was successfully prepared. The surface of the mesoporous silica was first modified by ferrocene (Fc) via a disulfide bond (–SS–) to form an oxidizing and reducing site and then complexed with a β-CD-PNIPAM star shaped polymer through host–guest interactions as a nano-valve to provide temperature responsive characteristics. The structure and properties of the complex nanoparticles were studied by FTIR, TGA, EDS, Zeta potential, and elemental analysis. Doxorubicin (DOX) and Naproxen (NAP), as model drugs, were loaded into nanocarriers to assess drug loading and release behaviour. The release of drugs from nanocarriers was enhanced with an increase of the GSH, H2O2 concentration, or temperatures of the solution. The kinetics of the release process were studied using different models. This nanocarrier presents successful multi-stimuli responsive drug delivery in optimal stimuli and provides potential applications for clinical treatment. Full article
(This article belongs to the Special Issue Polymers and Drug Delivery)
Show Figures

Graphical abstract

14 pages, 480 KB  
Article
Improving the Design of a MscL-Based Triggered Nanovalve
by Irene Iscla, Christina Eaton, Juandell Parker, Robin Wray, Zoltán Kovács and Paul Blount
Biosensors 2013, 3(1), 171-184; https://doi.org/10.3390/bios3010171 - 19 Mar 2013
Cited by 31 | Viewed by 10222
Abstract
The mechanosensitive channel of large conductance, MscL, has been proposed as a triggered nanovalve to be used in drug release and other nanodevices. It is a small homopentameric bacterial protein that has the largest gated pore known: greater than 30 Å. Large molecules, [...] Read more.
The mechanosensitive channel of large conductance, MscL, has been proposed as a triggered nanovalve to be used in drug release and other nanodevices. It is a small homopentameric bacterial protein that has the largest gated pore known: greater than 30 Å. Large molecules, even small proteins can be released through MscL. Although MscL normally gates in response to membrane tension, early studies found that hydrophilic or charged residue substitutions near the constriction of the channel leads to pore opening. Researchers have successfully changed the modality of MscL to open to stimuli such as light by chemically modifying a single residue, G22, within the MscL pore. Here, by utilizing in vivo, liposome efflux, and patch clamp assays we compared modification of G22 with that of another neighboring residue, G26, and demonstrate that modifying G26 may be a better choice for triggered nanovalves used for triggered vesicular release of compounds. Full article
(This article belongs to the Special Issue Nanomaterials for Biodetection and Drug Delivery)
Show Figures

Graphical abstract

21 pages, 1106 KB  
Review
Aptamer-Gated Nanoparticles for Smart Drug Delivery
by Veli Cengiz Ozalp, Fusun Eyidogan and Huseyin Avni Oktem
Pharmaceuticals 2011, 4(8), 1137-1157; https://doi.org/10.3390/ph4081137 - 15 Aug 2011
Cited by 68 | Viewed by 16881
Abstract
Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents [...] Read more.
Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers. Full article
(This article belongs to the Special Issue Aptamer-Based Therapeutics)
Show Figures

Back to TopTop