Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nanocochleate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3079 KiB  
Systematic Review
Annatto (Bixa orellana)-Based Nanostructures for Biomedical Applications—A Systematic Review
by Vitória Regina Pereira da Silva, Natália Ornelas Martins, Carolina Ramos dos Santos, Elysa Beatriz de Oliveira Damas, Paula Lauane Araujo, Gabriella de Oliveira Silva, Graziella Anselmo Joanitti and Marcella Lemos Brettas Carneiro
Pharmaceutics 2024, 16(10), 1275; https://doi.org/10.3390/pharmaceutics16101275 - 29 Sep 2024
Cited by 1 | Viewed by 2294
Abstract
Plants are a source of valuable organic chemical compounds with complex structures rich in therapeutic activities. The encapsulation of compounds in nanostructured systems is an alternative to avoid limitations, such as instability and low solubility, and to promote therapeutic use. The objective of [...] Read more.
Plants are a source of valuable organic chemical compounds with complex structures rich in therapeutic activities. The encapsulation of compounds in nanostructured systems is an alternative to avoid limitations, such as instability and low solubility, and to promote therapeutic use. The objective of the present review was to summarize the data in the literature on the physicochemical characteristics, biomedical efficacy, and toxicity of nanostructures containing extracts and oils obtained from annatto (Bixa orellana). For this, searches were conducted in the CINAHL, LILACS, Embase, FSTA, MEDLINE, ProQuest, PubMed, ScienceDirect, Scopus, and Web of Science databases. Studies that carried out the development, physical-chemical characterization, and evaluation of therapeutic efficacy and/or in vitro, in vivo, or clinical toxicity of nanostructures containing extracts and oils derived from annatto were included in the review. Of the 708 articles found, nine met the inclusion criteria. The included studies developed different nanostructures (nanofibers, nanocochleates, chitosan, lipid, polymeric, and metallic nanoparticles). These nanostructures showed leishmanicidal, photoprotective, antioxidant, antimicrobial, and immunomodulatory efficacy, and tissue regeneration potential with no or low toxic effects in the tested models. Thus, the present work supports the nanostructuring of annatto extracts and oils as a relevant approach to the development of new technologies for biomedical applications. Full article
Show Figures

Figure 1

18 pages, 1954 KiB  
Review
Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
by Rachna M. Kumar, Hitesh Kumar, Tanvi Bhatt, Rupshee Jain, Kanan Panchal, Akash Chaurasiya and Vikas Jain
Pharmaceuticals 2023, 16(2), 196; https://doi.org/10.3390/ph16020196 - 28 Jan 2023
Cited by 53 | Viewed by 12176
Abstract
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including [...] Read more.
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including the use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However, its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes. This review aims to provide in-depth information regarding fisetin as a potential candidate for anticancer therapy, its properties and various formulation strategies. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs)
Show Figures

Figure 1

24 pages, 4214 KiB  
Article
A Comparative Study of Quercetin-Loaded Nanocochleates and Liposomes: Formulation, Characterization, Assessment of Degradation and In Vitro Anticancer Potential
by Neha Munot, Ujjwala Kandekar, Prabhanjan S. Giram, Kavita Khot, Abhinandan Patil and Simona Cavalu
Pharmaceutics 2022, 14(8), 1601; https://doi.org/10.3390/pharmaceutics14081601 - 31 Jul 2022
Cited by 25 | Viewed by 4600
Abstract
Quercetin, a flavonoid, has antioxidant and anti-inflammatory properties and the potential to inhibit the proliferation of cancer, but its therapeutic efficacy is lowered due to poor solubility and bioavailability. Quercetin-loaded nanocochleates (QN) were developed using a trapping method by the addition of calcium [...] Read more.
Quercetin, a flavonoid, has antioxidant and anti-inflammatory properties and the potential to inhibit the proliferation of cancer, but its therapeutic efficacy is lowered due to poor solubility and bioavailability. Quercetin-loaded nanocochleates (QN) were developed using a trapping method by the addition of calcium ions into preformed negatively charged liposomes (QL) prepared by a thin-film hydration method. Liposomes were optimized by varying the concentration of Dimyristoyl phosphatidyl glycerol and quercetin by applying D-optimal factorial design using Design-Expert® software. Stable rods were observed using TEM with an average particle size, zeta potential and encapsulation efficiency of 502 nm, −18.52 mV and 88.62%, respectively, for QN which were developed from spherical QL showing 111.06 nm, −40.33 mV and 74.2%, respectively. In vitro release of quercetin from QN and QL was extended to 24 h. Poor bioavailability of quercetin is due to its degradation in the liver, so to mimic in vivo conditions, the degradation of quercetin released from QL and QN was studied in the presence of rat liver homogenate (S9G) and results revealed that QN, due to its unique structure, i.e., series of rolled up solid layers, shielded quercetin from the external environment and protected it. The safety and biocompatibility of QL and QN were provenby performing cytotoxicity studies on fibroblast L929 cell lines. QN showed superior anticancer activity compared to QL, as seen for human mouth cancerKB cell lines. Stability studies proved that nanocochleates were more stable than liposomal formulations. Thus, nanocochleates might serve as pharmaceutical nanocarriers for the improved efficacy of drugs with low aqueous solubility, poor bioavailability, poor targeting ability and stability. Full article
(This article belongs to the Special Issue Recent Developments and Emerging Trends in Nanomedicine)
Show Figures

Graphical abstract

10 pages, 465 KiB  
Article
Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential Oils Formulated in Nanocochleates against Leishmania amazonensis
by Laura Machín, Beatriz Tamargo, Abel Piñón, Regla C. Atíes, Ramón Scull, William N. Setzer and Lianet Monzote
Molecules 2019, 24(23), 4222; https://doi.org/10.3390/molecules24234222 - 20 Nov 2019
Cited by 19 | Viewed by 3736
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by protozoan parasites of the Leishmania genus. The absence of effective vaccines and the limitations of current treatments make the search for effective therapies a real need. Different plant-derived essential oils (EOs) have shown [...] Read more.
Leishmaniasis is a group of neglected tropical diseases caused by protozoan parasites of the Leishmania genus. The absence of effective vaccines and the limitations of current treatments make the search for effective therapies a real need. Different plant-derived essential oils (EOs) have shown antileishmanial effects, in particular from Bixa orellana L. (EO-Bo) and Dysphania ambrosioides (L.) Mosyakin & Clemants (EO-Da). In the present study, the EO-Bo and EO-Da, formulated in nanocochleates (EO-Bo-NC and EO-Da-NC, respectively), were evaluated in vitro and in vivo against L. amazonensis. The EO-Bo-NC and EO-Da-NC did not increase the in vitro inhibitory activity of the EOs, although the EO-Bo-NC showed reduced cytotoxic effects. In the animal model, both formulations (30 mg/kg/intralesional route/every 4 days/4 times) showed no deaths or weight loss greater than 10%. In the animal (mouse) model, EO-Bo-NC contributed to the control of infection (p < 0.05) in comparison with EO-Bo treatment, while the mice treated with EO-Da-NC exhibited larger lesions (p < 0.05) compared to those treated with EO-Da. The enhanced in vivo activity observed for EO-Bo-NC suggests that lipid-based nanoformulations like nanocochleates should be explored for their potential in the proper delivery of drugs, and in particular, the delivery of hydrophobic materials for effective cutaneous leishmaniasis treatment. Full article
(This article belongs to the Special Issue Drug Discovery for Neglected Diseases)
Show Figures

Figure 1

15 pages, 3779 KiB  
Article
Stable, Monodisperse, and Highly Cell-Permeating Nanocochleates from Natural Soy Lecithin Liposomes
by Martina Asprea, Francesca Tatini, Vieri Piazzini, Francesca Rossi, Maria Camilla Bergonzi and Anna Rita Bilia
Pharmaceutics 2019, 11(1), 34; https://doi.org/10.3390/pharmaceutics11010034 - 16 Jan 2019
Cited by 40 | Viewed by 6545
Abstract
(1) Background: Andrographolide (AN), the main diterpenoid constituent of Andrographis paniculata, has a wide spectrum of biological activities. The aim of this study was the development of nanocochleates (NCs) loaded with AN and based on phosphatidylserine (PS) or phosphatidylcholine (PC), cholesterol and [...] Read more.
(1) Background: Andrographolide (AN), the main diterpenoid constituent of Andrographis paniculata, has a wide spectrum of biological activities. The aim of this study was the development of nanocochleates (NCs) loaded with AN and based on phosphatidylserine (PS) or phosphatidylcholine (PC), cholesterol and calcium ions in order to overcome AN low water solubility, its instability under alkaline conditions and its rapid metabolism in the intestine. (2) Methods: The AN-loaded NCs (AN–NCs) were physically and chemically characterised. The in vitro gastrointestinal stability and biocompatibility of AN–NCs in J77A.1 macrophage and 3T3 fibroblasts cell lines were also investigated. Finally, the uptake of nanocarriers in macrophage cells was studied. (3) Results: AN–NCs obtained from PC nanoliposomes were suitable nanocarriers in terms of size and homogeneity. They had an extraordinary stability after lyophilisation without the use of lyoprotectants and after storage at room temperature. The encapsulation efficiency was 71%, while approximately 95% of AN was released in PBS after 24 h, with kinetics according to the Hixson–Crowell model. The in vitro gastrointestinal stability and safety of NCs, both in macrophages and 3T3 fibroblasts, were also assessed. Additionally, NCs had extraordinary uptake properties in macrophages. (4) Conclusions: NCs developed in this study could be suitable for both AN oral and parental administration, amplifying its therapeutic value. Full article
(This article belongs to the Special Issue Smart Nanovesicles for Drug Targeting and Delivery)
Show Figures

Graphical abstract

11 pages, 522 KiB  
Article
In Vitro and In Vivo Evaluation of Essential Oil from Artemisia absinthium L. Formulated in Nanocochleates against Cutaneous Leishmaniasis
by Beatriz Tamargo, Lianet Monzote, Abel Piñón, Laura Machín, Marley García, Ramón Scull and William N. Setzer
Medicines 2017, 4(2), 38; https://doi.org/10.3390/medicines4020038 - 9 Jun 2017
Cited by 12 | Viewed by 5635
Abstract
Background: Leishmaniasis is a zoonotic disease caused by protozoan parasites from Leishmania genus. Currently, there are no effective vaccines available and the available therapies are far from ideal. In particular, the development of new therapeutic strategies to reduce the infection caused by Leishmania [...] Read more.
Background: Leishmaniasis is a zoonotic disease caused by protozoan parasites from Leishmania genus. Currently, there are no effective vaccines available and the available therapies are far from ideal. In particular, the development of new therapeutic strategies to reduce the infection caused by Leishmania amazonensis could be considered desirable. Different plant-derived products have demonstrated antileishmanial activity, including the essential oil (EO) from Artemisia absinthium L. (EO-Aa), Asteraceae. Methods: In the present study, the EO-Aa formulated in nanocochleates (EO-Aa-NC) was investigated in vitro against intracellular amastigotes of L. amazonensis and non-infected macrophages from BALB/c mice. In addition, the EO-Aa-NC was also evaluated in vivo against on experimental cutaneous leishmaniasis, which body weight, lesion progression, and parasite load were determined. Results: EO-Aa-NC displayed IC50 values of 21.5 ± 2.5 μg/mL and 27.7 ± 5.6 μg/mL against intracellular amastigotes of L. amazonensis and non-infected peritoneal macrophage, respectively. In the animal model, the EO-Aa-NC (30 mg/kg/intralesional route/every 4 days 4 times) showed no deaths or weight loss greater than 10%. In parallel, the EO-Aa-NC suppressed the infection in the murine model by approximately 50%, which was statistically superior (p < 0.05) than controls and mice treated with EO-Aa. In comparison with Glucantime®, EO-Aa-NC inhibited the progression of infection as efficiently (p > 0.05) as administration of the reference drug. Conclusions: Encochleation of EO-Aa resulted in a stable, tolerable, and efficacious antileishmanial formulation, facilitating systemic delivery of EO, with increased activity compared to administration of the free EO-Aa. This new formulation shows promising potential to future studies aimed at a new therapeutic strategy to treat leishmaniasis. Full article
Show Figures

Graphical abstract

Back to TopTop