Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = myxothiazol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3447 KiB  
Article
Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells
by Harrison Wang, Teng-Yao Song, Jorge Reyes-García and Yong-Xiao Wang
Cells 2024, 13(21), 1807; https://doi.org/10.3390/cells13211807 - 1 Nov 2024
Cited by 3 | Viewed by 2285
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we [...] Read more.
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2) production. Our assays showed that hypoxia largely increased O2 production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron–sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS. Full article
Show Figures

Figure 1

24 pages, 7851 KiB  
Article
Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells
by Elisabet Cuyàs, Salvador Fernández-Arroyo, Sara Verdura, Ruth Lupu, Jorge Joven and Javier A. Menendez
Cancers 2022, 14(24), 6214; https://doi.org/10.3390/cancers14246214 - 16 Dec 2022
Cited by 4 | Viewed by 3239
Abstract
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and [...] Read more.
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial–cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. “Upper” and “lower” glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl–carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer. Full article
(This article belongs to the Special Issue Metabolic Alterations in Cancer)
Show Figures

Figure 1

18 pages, 2407 KiB  
Article
Conditions Conducive to the Glutathionylation of Complex I Subunit NDUFS1 Augment ROS Production following the Oxidation of Ubiquinone Linked Substrates, Glycerol-3-Phosphate and Proline
by Kevin Wang, Jonathan Hirschenson, Amanda Moore and Ryan J. Mailloux
Antioxidants 2022, 11(10), 2043; https://doi.org/10.3390/antiox11102043 - 17 Oct 2022
Cited by 9 | Viewed by 3009
Abstract
Mitochondrial complex I can produce large quantities of reactive oxygen species (ROS) by reverse electron transfer (RET) from the ubiquinone (UQ) pool. Glutathionylation of complex I does induce increased mitochondrial superoxide/hydrogen peroxide (O2●−/H2O2) production, but the [...] Read more.
Mitochondrial complex I can produce large quantities of reactive oxygen species (ROS) by reverse electron transfer (RET) from the ubiquinone (UQ) pool. Glutathionylation of complex I does induce increased mitochondrial superoxide/hydrogen peroxide (O2●−/H2O2) production, but the source of this ROS has not been identified. Here, we interrogated the glutathionylation of complex I subunit NDUFS1 and examined if its modification can result in increased ROS production during RET from the UQ pool. We also assessed glycerol-3-phosphate dehydrogenase (GPD) and proline dehydrogenase (PRODH) glutathionylation since both flavoproteins have measurable rates for ROS production as well. Induction of glutathionylation with disulfiram induced a significant increase in O2●−/H2O2 production during glycerol-3-phosphate (G3P) and proline (Pro) oxidation. Treatment of mitochondria with inhibitors for complex I (rotenone and S1QEL), complex III (myxothiazol and S3QEL), glycerol-3-phosphate dehydrogenase (iGP), and proline dehydrogenase (TFA) confirmed that the sites for this increase were complexes I and III, respectively. Treatment of liver mitochondria with disulfiram (50–1000 nM) did not induce GPD or PRODH glutathionylation, nor did it affect their activities, even though disulfiram dose-dependently increased the total number of protein glutathione mixed disulfides (PSSG). Immunocapture of complex I showed disulfiram incubations resulted in the modification of NDUFS1 subunit in complex I. Glutathionylation could be reversed by reducing agents, restoring the deglutathionylated state of NDUFS1 and the activity of the complex. Reduction of glutathionyl moieties in complex I also significantly decreased ROS production by RET from GPD and PRODH. Overall, these findings demonstrate that the modification of NDUFS1 can result in increased ROS production during RET from the UQ pool, which has implications for understanding the relationship between mitochondrial glutathionylation reactions and induction of oxidative distress in several pathologies Full article
(This article belongs to the Special Issue Glutaredoxin and Glutathione)
Show Figures

Graphical abstract

13 pages, 3077 KiB  
Article
Inhibition of Complex I of the Respiratory Chain, but Not Complex III, Attenuates Degranulation and Cytokine Secretion in Human Skin Mast Cells
by Thomas Buttgereit, Moritz Pfeiffenberger, Stefan Frischbutter, Pierre-Louis Krauß, Yuling Chen, Marcus Maurer, Frank Buttgereit and Timo Gaber
Int. J. Mol. Sci. 2022, 23(19), 11591; https://doi.org/10.3390/ijms231911591 - 30 Sep 2022
Cited by 7 | Viewed by 2532
Abstract
The mechanisms of mast cell (MC) degranulation and MC-driven skin symptoms are well-described. In contrast, data about the role of mitochondrial respiration for immune functions of human skin MCs are lacking. Oxygen consumption rate (OCR) in primary human skin MCs during IgE-mediated activation [...] Read more.
The mechanisms of mast cell (MC) degranulation and MC-driven skin symptoms are well-described. In contrast, data about the role of mitochondrial respiration for immune functions of human skin MCs are lacking. Oxygen consumption rate (OCR) in primary human skin MCs during IgE-mediated activation in the absence of glucose was examined using a metabolic flux analyzer. Effects of the inhibition of mitochondrial complex I (by rotenone A) and III (by myxothiazol) on degranulation and cytokine secretion (IL-4, IL-5, IL-6, IL-13, TNF-α, and GM-CSF) were explored by the β-hexosaminidase release assay and multiplex ELISA. IgE-mediated activation rapidly increased the mitochondrial OCR and extracellular acidification; the contribution of non-mitochondrial oxygen consumption remained unchanged at lower levels. Both myxothiazol and rotenone A reduced OCR, the mitochondrial parameters, and extracellular acidification; however, myxothiazol did not affect degranulation and cytokine secretion. In contrast, degranulation and the secretion of IL-6, IL-13, TNF-α, and GM-CSF were reduced by rotenone A, whereas the secretion of IL-4 and IL-5 was not significantly affected. The inhibitors did not affect cell viability. Our results highlight the important role played by mitochondrial respiration in primary human skin MCs and allow for a conclusion on a hierarchy of their effector functions. Drugs targeting specific pathways in mitochondria may provide future options to control MC-driven skin symptoms. Full article
(This article belongs to the Special Issue The Role of Mast Cells and Their Inflammatory Mediators in Immunity)
Show Figures

Figure 1

22 pages, 16921 KiB  
Article
Experimental Conditions That Influence the Utility of 2′7′-Dichlorodihydrofluorescein Diacetate (DCFH2-DA) as a Fluorogenic Biosensor for Mitochondrial Redox Status
by Lianne R. de Haan, Megan J. Reiniers, Laurens F. Reeskamp, Ali Belkouz, Lei Ao, Shuqun Cheng, Baoyue Ding, Rowan F. van Golen and Michal Heger
Antioxidants 2022, 11(8), 1424; https://doi.org/10.3390/antiox11081424 - 22 Jul 2022
Cited by 20 | Viewed by 4758
Abstract
Oxidative stress has been causally linked to various diseases. Electron transport chain (ETC) inhibitors such as rotenone and antimycin A are frequently used in model systems to study oxidative stress. Oxidative stress that is provoked by ETC inhibitors can be visualized using the [...] Read more.
Oxidative stress has been causally linked to various diseases. Electron transport chain (ETC) inhibitors such as rotenone and antimycin A are frequently used in model systems to study oxidative stress. Oxidative stress that is provoked by ETC inhibitors can be visualized using the fluorogenic probe 2′,7′-dichlorodihydrofluorescein-diacetate (DCFH2-DA). Non-fluorescent DCFH2-DA crosses the plasma membrane, is deacetylated to 2′,7′-dichlorodihydrofluorescein (DCFH2) by esterases, and is oxidized to its fluorescent form 2′,7′-dichlorofluorescein (DCF) by intracellular ROS. DCF fluorescence can, therefore, be used as a semi-quantitative measure of general oxidative stress. However, the use of DCFH2-DA is complicated by various protocol-related factors that mediate DCFH2-to-DCF conversion independently of the degree of oxidative stress. This study therefore analyzed the influence of ancillary factors on DCF formation in the context of ETC inhibitors. It was found that ETC inhibitors trigger DCF formation in cell-free experiments when they are co-dissolved with DCFH2-DA. Moreover, the extent of DCF formation depended on the type of culture medium that was used, the pH of the assay system, the presence of fetal calf serum, and the final DCFH2-DA solvent concentration. Conclusively, experiments with DCFH2-DA should not discount the influence of protocol-related factors such as medium and mitochondrial inhibitors (and possibly other compounds) on the DCFH2-DA-DCF reaction and proper controls should always be built into the assay protocol. Full article
Show Figures

Figure 1

15 pages, 2963 KiB  
Article
Akt Inhibition as Preconditioning Treatment to Protect Kidney Cells against Anoxia
by Nicolas Melis, Romain Carcy, Isabelle Rubera, Marc Cougnon, Christophe Duranton, Michel Tauc and Didier F. Pisani
Int. J. Mol. Sci. 2022, 23(1), 152; https://doi.org/10.3390/ijms23010152 - 23 Dec 2021
Cited by 3 | Viewed by 3505
Abstract
Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway [...] Read more.
Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia. Full article
(This article belongs to the Special Issue New Strategies Protecting from Ischemia/Reperfusion)
Show Figures

Figure 1

18 pages, 5542 KiB  
Article
Methylene Blue Bridges the Inhibition and Produces Unusual Respiratory Changes in Complex III-Inhibited Mitochondria. Studies on Rats, Mice and Guinea Pigs
by Gergely Sváb, Márton Kokas, Ildikó Sipos, Attila Ambrus and László Tretter
Antioxidants 2021, 10(2), 305; https://doi.org/10.3390/antiox10020305 - 16 Feb 2021
Cited by 14 | Viewed by 6954
Abstract
Methylene blue (MB) is used in human therapy in various pathological conditions. Its effects in neurodegenerative disease models are promising. MB acts on multiple cellular targets and mechanisms, but many of its potential beneficial effects are ascribed to be mitochondrial. According to the [...] Read more.
Methylene blue (MB) is used in human therapy in various pathological conditions. Its effects in neurodegenerative disease models are promising. MB acts on multiple cellular targets and mechanisms, but many of its potential beneficial effects are ascribed to be mitochondrial. According to the “alternative electron transport” hypothesis, MB is capable of donating electrons to cytochrome c bypassing complex I and III. As a consequence of this, the deleterious effects of the inhibitors of complex I and III can be ameliorated by MB. Recently, the beneficial effects of MB exerted on complex III-inhibited mitochondria were debated. In the present contribution, several pieces of evidence are provided towards that MB is able to reduce cytochrome c and improve bioenergetic parameters, like respiration and membrane potential, in mitochondria treated with complex III inhibitors, either antimycin or myxothiazol. These conclusions were drawn from measurements for mitochondrial oxygen consumption, membrane potential, NAD(P)H steady state, MB uptake and MB-cytochrome c oxidoreduction. In the presence of MB and complex III inhibitors, unusual respiratory reactions, like decreased oxygen consumption as a response to ADP addition as well as stimulation of respiration upon administration of inhibitors of ATP synthase or ANT, were observed. Qualitatively identical results were obtained in three rodent species. The actual metabolic status of mitochondria is well reflected in the distribution of MB amongst various compartments of this organelle. Full article
(This article belongs to the Special Issue Mitochondrial Reactive Oxygen Species)
Show Figures

Figure 1

Back to TopTop