Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = myristoyl-CoA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3763 KB  
Review
N-Myristoyltransferase Inhibition in Parasitic Pathogens: Insights from Computer-Aided Drug Design
by Fernanda de França Genuíno Ramos Campos, Willian Charles da Silva Moura, Diego Romário-Silva, Rodrigo Santos Aquino de Araújo, Inês Morais, Sofia Cortes, Fátima Nogueira, Ricardo Olimpio de Moura and Igor José dos Santos Nascimento
Molecules 2025, 30(18), 3703; https://doi.org/10.3390/molecules30183703 - 11 Sep 2025
Viewed by 1023
Abstract
Neglected tropical diseases (NTDs) constitute a group of infectious diseases that severely affect the health of impoverished populations, and the health, economies, and health systems of affected countries. Leishmaniasis and human African trypanosomiasis (HAT) are particularly notable, and malaria, despite not being neglected, [...] Read more.
Neglected tropical diseases (NTDs) constitute a group of infectious diseases that severely affect the health of impoverished populations, and the health, economies, and health systems of affected countries. Leishmaniasis and human African trypanosomiasis (HAT) are particularly notable, and malaria, despite not being neglected, is part of the “big three” (HIV, tuberculosis, and malaria) with high incidence, increasing the probability of infection by NTDs. Therefore, efforts are ongoing in the search for new drugs targeting the enzyme N-myristoyltransferase (NMT), a potential drug target that has been explored. Thus, we provide a review here that highlights the epidemiological data for these diseases and the importance of discovering new drugs against these agents. Here, the importance of NMT and its inhibitors is clear, with this study highlighting thiochromene, pyrazole, thienopyridine, oxadiazole, benzothiophene, and quinoline scaffolds, identified by computational methods followed by biological assays to validate the findings; for example, this study shows the action of the aminoacylpyrrolidine derivative 13 against Leishmania donovani NMT (IC50 of 1.6 nM) and the pyrazole analog 23 against Plasmodium vivax NMT (IC50 of 9.48 nM), providing several insights that can be used in drug design in further work. Furthermore, the selectivity and improvement in activity are related to interactions with the residues Val81, Phe90, Tyr217, Tyr326, Tyr345, and Met420 for leishmaniasis (LmNMT); Tyr211, Leu410, and Ser319 for malaria (PvNMT); and Lys25 and Lys389 for HAT (TbNMT). We hope our work provides valuable insights that research groups worldwide can use to search for innovative drugs to combat these diseases. Full article
(This article belongs to the Special Issue Advances in the Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

17 pages, 3334 KB  
Article
Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins
by Eric Soupene and Frans A. Kuypers
Biomolecules 2022, 12(12), 1726; https://doi.org/10.3390/biom12121726 - 22 Nov 2022
Cited by 7 | Viewed by 2610
Abstract
The transfer of acyl chains to proteins and lipids from acyl-CoA donor molecules is achieved by the actions of diverse enzymes and proteins, including the acyl-CoA binding domain-containing protein ACBD6. N-myristoyl-transferase (NMT) enzymes catalyze the covalent attachment of a 14-carbon acyl chain from [...] Read more.
The transfer of acyl chains to proteins and lipids from acyl-CoA donor molecules is achieved by the actions of diverse enzymes and proteins, including the acyl-CoA binding domain-containing protein ACBD6. N-myristoyl-transferase (NMT) enzymes catalyze the covalent attachment of a 14-carbon acyl chain from the relatively rare myristoyl-CoA to the N-terminal glycine residue of myr-proteins. The interaction of the ankyrin-repeat domain of ACBD6 with NMT produces an active enzymatic complex for the use of myristoyl-CoA protected from competitive inhibition by acyl donor competitors. The absence of the ACBD6/NMT complex in ACBD6.KO cells increased the sensitivity of the cells to competitors and significantly reduced myristoylation of proteins. Protein palmitoylation was not altered in those cells. The specific defect in myristoyl-transferase activity of the ACBD6.KO cells provided further evidence of the essential functional role of the interaction of ACBD6 with the NMT enzymes. Acyl-CoAs bound to the acyl-CoA binding domain of ACBD6 are acyl donors for the lysophospholipid acyl-transferase enzymes (LPLAT), which acylate single acyl-chain lipids, such as the bioactive molecules LPA and LPC. Whereas the formation of acyl-CoAs was not altered in ACBD6.KO cells, lipid acylation processes were significantly reduced. The defect in PC formation from LPC by the LPCAT enzymes resulted in reduced lipid droplets content. The diversity of the processes affected by ACBD6 highlight its dual function as a carrier and a regulator of acyl-CoA dependent reactions. The unique role of ACBD6 represents an essential common feature of (acyl-CoA)-dependent modification pathways controlling the lipid and protein composition of human cell membranes. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

Back to TopTop