Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = muscle laser capture microdissection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1768 KiB  
Review
Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future
by Marc Pauper, Andreas Hentschel, Malte Tiburcy, Sergi Beltran, Tobias Ruck, Ulrike Schara-Schmidt and Andreas Roos
Biomolecules 2025, 15(1), 130; https://doi.org/10.3390/biom15010130 - 15 Jan 2025
Cited by 3 | Viewed by 1638
Abstract
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying [...] Read more.
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents—also through exemplary case studies—the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes. The steady development may allow to overcome existing limitations including a quenched dynamic range and quantification of different protein isoforms. Future directions may include targeted proteomics in diagnostic settings using not only muscle biopsies but also liquid biopsies to address the need for minimally invasive procedures. Full article
Show Figures

Figure 1

24 pages, 3307 KiB  
Article
A Deficiency in Glutamine-Fructose-6-Phosphate Transaminase 1 (Gfpt1) in Skeletal Muscle Results in Reduced Glycosylation of the Delta Subunit of the Nicotinic Acetylcholine Receptor (AChRδ)
by Stephen Henry Holland, Ricardo Carmona-Martinez, Kaela O’Connor, Daniel O’Neil, Andreas Roos, Sally Spendiff and Hanns Lochmüller
Biomolecules 2024, 14(10), 1252; https://doi.org/10.3390/biom14101252 - 3 Oct 2024
Cited by 1 | Viewed by 1956
Abstract
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable [...] Read more.
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable muscle weakness. A subset of five of these CMS-causative genes are associated with protein glycosylation. Glutamine-fructose-6-phosphate transaminase 1 (Gfpt1) is the rate-limiting enzyme within the hexosamine biosynthetic pathway (HBP), a metabolic pathway that produces the precursors for glycosylation. We hypothesized that deficiency in Gfpt1 expression results in aberrant or reduced glycosylation, impairing the proper assembly and stability of key NMJ-associated proteins. Using both in vitro and in vivo Gfpt1-deficient models, we determined that the acetylcholine receptor delta subunit (AChRδ) has reduced expression and is hypo-glycosylated. Using laser capture microdissection, NMJs were harvested from Gfpt1 knockout mouse muscle. A lower-molecular-weight species of AChRδ was identified at the NMJ that was not detected in controls. Furthermore, Gfpt1-deficient muscle lysates showed impairment in protein O-GlcNAcylation and sialylation, suggesting that multiple glycan chains are impacted. Other key NMJ-associated proteins, in addition to AChRδ, may also be differentially glycosylated in Gfpt1-deficient muscle. Full article
(This article belongs to the Special Issue Skeletal Muscle in Health, Exercise and Aging)
Show Figures

Graphical abstract

11 pages, 3049 KiB  
Article
Fusion of Wild-Type Mesoangioblasts with Myotubes of mtDNA Mutation Carriers Leads to a Proportional Reduction in mtDNA Mutation Load
by Ruby Zelissen, Somaieh Ahmadian, Joaquin Montilla-Rojo, Erika Timmer, Monique Ummelen, Anton Hopman, Hubert Smeets and Florence van Tienen
Int. J. Mol. Sci. 2023, 24(3), 2679; https://doi.org/10.3390/ijms24032679 - 31 Jan 2023
Cited by 4 | Viewed by 2356
Abstract
In 25% of patients with mitochondrial myopathies, pathogenic mitochondrial DNA (mtDNA) mutation are the cause. For heteroplasmic mtDNA mutations, symptoms manifest when the mutation load exceeds a tissue-specific threshold. Therefore, lowering the mutation load is expected to ameliorate disease manifestations. This can be [...] Read more.
In 25% of patients with mitochondrial myopathies, pathogenic mitochondrial DNA (mtDNA) mutation are the cause. For heteroplasmic mtDNA mutations, symptoms manifest when the mutation load exceeds a tissue-specific threshold. Therefore, lowering the mutation load is expected to ameliorate disease manifestations. This can be achieved by fusing wild-type mesoangioblasts with mtDNA mutant myotubes. We have tested this in vitro for female carriers of the m.3271T>C or m.3291T>C mutation (mutation load >90%) using wild-type male mesoangioblasts. Individual fused myotubes were collected by a newly-developed laser capture microdissection (LCM) protocol, visualized by immunostaining using an anti-myosin antibody. Fusion rates were determined based on male-female nuclei ratios by fluorescently labelling the Y-chromosome. Using combined ‘wet’ and ‘air dried’ LCM imaging improved fluorescence imaging quality and cell yield. Wild-type mesoangioblasts fused in different ratios with myotubes containing either the m.3271T>C or the m.3291T>C mutation. This resulted in the reduction of the mtDNA mutation load proportional to the number of fused wild-type mesoangioblasts for both mtDNA mutations. The proportional reduction in mtDNA mutation load in vitro after fusion is promising in the context of muscle stem cell therapy for mtDNA mutation carriers in vivo, in which we propose the same strategy using autologous wild-type mesoangioblasts. Full article
(This article belongs to the Special Issue Recent Advances on Mitochondrial Diseases)
Show Figures

Figure 1

15 pages, 9997 KiB  
Article
Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers
by Matthias Elstner, Konrad Olszewski, Holger Prokisch, Thomas Klopstock and Marta Murgia
Int. J. Mol. Sci. 2021, 22(20), 11080; https://doi.org/10.3390/ijms222011080 - 14 Oct 2021
Cited by 5 | Viewed by 2876
Abstract
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective [...] Read more.
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype. Full article
(This article belongs to the Special Issue Novel Molecular Approaches to Skeletal Muscle Disease and Disuse)
Show Figures

Figure 1

14 pages, 2697 KiB  
Article
Identification of NPB, NPW and Their Receptor in the Rat Heart
by Shashank Pandey, Zdenek Tuma, Elisa Peroni, Olivier Monasson, Anna Maria Papini and Magdalena Chottova Dvorakova
Int. J. Mol. Sci. 2020, 21(21), 7827; https://doi.org/10.3390/ijms21217827 - 22 Oct 2020
Cited by 9 | Viewed by 3435
Abstract
Members of neuropeptide B/W signaling system have been predominantly detected and mapped within the CNS. In the rat, this system includes neuropeptide B (NPB), neuropeptide W (NPW) and their specific receptor NPBWR1. This signaling system has a wide spectrum of functions including a [...] Read more.
Members of neuropeptide B/W signaling system have been predominantly detected and mapped within the CNS. In the rat, this system includes neuropeptide B (NPB), neuropeptide W (NPW) and their specific receptor NPBWR1. This signaling system has a wide spectrum of functions including a role in modulation of inflammatory pain and neuroendocrine functions. Expression of NPB, NPW and NPBWR1 in separate heart compartments, dorsal root ganglia (DRG) and stellate ganglia was proven by RT-qPCR, Western blot (WB) and immunofluorescence. Presence of mRNA for all tested genes was detected within all heart compartments and ganglia. The presence of proteins preproNPB, preproNPW and NPBWR1 was confirmed in all the chambers of heart by WB. Expression of preproNPW and preproNPB was proven in cardiac ganglionic cells obtained by laser capture microdissection. In immunofluorescence analysis, NPB immunoreactivity was detected in nerve fibers, some nerve cell bodies and smooth muscle within heart and both ganglia. NPW immunoreactivity was present in the nerve cell bodies and nerve fibers of heart ganglia. Weak nonhomogenous staining of cardiomyocytes was present within heart ventricles. NPBWR1 immunoreactivity was detected on cardiomyocytes and some nerve fibers. We confirmed the presence of NPB/W signaling system in heart, DRG and stellate ganglia by proteomic and genomic analyses. Full article
(This article belongs to the Special Issue Peptides for Health Benefits 2020)
Show Figures

Graphical abstract

15 pages, 2311 KiB  
Article
The Interaction between 30b-5p miRNA and MBNL1 mRNA is Involved in Vascular Smooth Muscle Cell Differentiation in Patients with Coronary Atherosclerosis
by Chin Cheng Woo, Wenting Liu, Xiao Yun Lin, Rajkumar Dorajoo, Kee Wah Lee, A Mark Richards, Chuen Neng Lee, Thidathip Wongsurawat, Intawat Nookaew and Vitaly Sorokin
Int. J. Mol. Sci. 2020, 21(1), 11; https://doi.org/10.3390/ijms21010011 - 18 Dec 2019
Cited by 21 | Viewed by 4434
Abstract
Vascular smooth muscle cells (VSMCs) in the arterial wall have diverse functions. In pathological states, the interplay between transcripts and microRNAs (miRNAs) leads to phenotypic changes. Understanding the regulatory role of miRNAs and their target genes may reveal how VSMCs modulate the pathogenesis [...] Read more.
Vascular smooth muscle cells (VSMCs) in the arterial wall have diverse functions. In pathological states, the interplay between transcripts and microRNAs (miRNAs) leads to phenotypic changes. Understanding the regulatory role of miRNAs and their target genes may reveal how VSMCs modulate the pathogenesis of coronary artery disease. Laser capture microdissection was performed on aortic wall tissues obtained from coronary artery bypass graft patients with and without recent acute myocardial infarction (MI). The mSMRT-qPCR miRNA assay platform (MiRXES, Singapore) was used to profile miRNA. The miRNA data were co-analyzed with significant mRNA transcripts. TargetScan 7.1 was applied to evaluate miRNA–mRNA interactions. The miRNA profiles of 29 patients (16 MI and 13 non-MI) were evaluated. Thirteen VSMC-related miRNAs were differentially expressed between the MI and non-MI groups. Analysis revealed seven miRNA-targeted mRNAs related to muscular tissue differentiation and proliferation. TargetScan revealed that among the VSMC-related transcripts, MBNL1 had a recognition site that matched the hsa-miR-30b-5p target seed sequence. In addition to predicted analysis, our experiment in vitro with human VSMC culture confirmed that hsa-miR-30b-5p negatively correlated with MBNL1. Our data showed that overexpression of hsa-miR-30b-5p led to downregulation of MBNL1 in VSMCs. This process influences VSMC proliferation and might be involved in VSMC differentiation. Full article
(This article belongs to the Special Issue Pathomechanisms of Atherosclerosis. Part I)
Show Figures

Figure 1

19 pages, 6438 KiB  
Article
Analysis of Gene Expression Signatures in Cancer-Associated Stroma from Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas
by Julia Ettlin, Elena Clementi, Parisa Amini, Alexandra Malbon and Enni Markkanen
Int. J. Mol. Sci. 2017, 18(5), 1101; https://doi.org/10.3390/ijms18051101 - 20 May 2017
Cited by 40 | Viewed by 11944
Abstract
Cancer-associated stroma (CAS) plays a key role in cancer initiation and progression. Spontaneously occurring canine mammary carcinomas are viewed as excellent models of human breast carcinomas. Considering the importance of CAS for human cancer, it likely plays a central role in canine tumours [...] Read more.
Cancer-associated stroma (CAS) plays a key role in cancer initiation and progression. Spontaneously occurring canine mammary carcinomas are viewed as excellent models of human breast carcinomas. Considering the importance of CAS for human cancer, it likely plays a central role in canine tumours as well. So far, however, canine CAS lacks characterisation, and it remains unclear whether the biology between CAS from canine and human tumours is comparable. In this proof-of-principle study, using laser-capture microdissection, we isolated CAS and normal stroma from 13 formalin-fixed paraffin embedded canine simple mammary carcinomas and analysed the expression of seven known human CAS markers by RT-qPCR (Reverse Transcription quantitative PCR) and validated some targets by immunohistochemistry. We found that Col1a1 (Collagen1α1), αSMA (alpha Smooth Muscle Actin), FAP (Fibroblast activation protein), PDGFRβ (Platelet-derived growth factor receptor beta), and Caveolin-1 were significantly upregulated in canine CAS, and the expression of CXCL12 (Stromal cell derived factor 1) significantly decreased, whereas MMP2 (Matrix Metalloproteinase 1) and IL6 (Interleukin 6) did not change. Our results suggest strong similarities in CAS biology in canine and human mammary carcinomas but also reveal some differences. To the best of our knowledge, this is the first report to provide a comprehensive expression analysis of the most important CAS markers in canine simple mammary carcinomas and further supports the validity of the dog as model for human cancer. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

17 pages, 3109 KiB  
Article
N-acetylglucosamine-1-Phosphate Transferase Suppresses Lysosomal Hydrolases in Dysfunctional Osteoclasts: A Potential Mechanism for Vascular Calcification
by Yang Lei, Masaya Iwashita, Jung Choi, Masanori Aikawa and Elena Aikawa
J. Cardiovasc. Dev. Dis. 2015, 2(2), 31-47; https://doi.org/10.3390/jcdd2020031 - 15 Apr 2015
Cited by 8 | Viewed by 7308
Abstract
In addition to increased differentiation of vascular smooth muscle cells into osteoblast-like phenotypes, the limited accumulation of osteoclasts in atherosclerotic plaques or their dysfunction may participate in potential mechanisms for vascular calcification. N-acetylglucosamine-1-phosphate transferase containing alpha and beta subunits (GNPTAB) is a [...] Read more.
In addition to increased differentiation of vascular smooth muscle cells into osteoblast-like phenotypes, the limited accumulation of osteoclasts in atherosclerotic plaques or their dysfunction may participate in potential mechanisms for vascular calcification. N-acetylglucosamine-1-phosphate transferase containing alpha and beta subunits (GNPTAB) is a transmembrane enzyme complex that mediates the vesicular transport of lysosomal hydrolases. GNPTAB may also regulate the biogenesis of lysosomal hydrolases from bone-marrow derived osteoclasts. In this study, the areas surrounding calcification in human atherosclerotic plaques contained high levels of GNPTAB and low levels of lysosomal hydrolases such as cathepsin K (CTSK) and tartrate-resistant acid phosphatase (TRAP), as demonstrated by immunohistochemistry and laser-capture microdissection-assisted mRNA expression analysis. We therefore hypothesized that GNPTAB secretion may suppress the release of CTSK and TRAP by vascular osteoclast-like cells, thus causing their dysfunction and reducing the resorption of calcification. We used human primary macrophages derived from peripheral blood mononuclear cells, an established osteoclast differentiation model. GNPTAB siRNA silencing accelerated the formation of functional osteoclasts as detected by increased secretion of CTSK and TRAP and increased their bone resorption activity as gauged by resorption pits assay. We concluded that high levels of GNPTAB inhibit secretion of lysosomal hydrolases in dysfunctional osteoclasts, thereby affecting their resorption potential in cardiovascular calcification. Full article
(This article belongs to the Special Issue Genetics and Cardiovascular Development and Disease)
Show Figures

Figure 1

Back to TopTop