Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = muscle–eye–brain disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7151 KiB  
Article
Variable Ophthalmologic Phenotypes Associated with Biallelic Loss-of-Function Variants in POMGNT1
by Lucia Ziccardi, Lucilla Barbano, Mattia D’Andrea, Alessandro Bruselles, Carmen Dell’Aquila, Marcello Niceta, Cecilia Mancini, Alessandro Leone, Mattia Carvetta, Maria Albanese, Emilia Stellacci, Marco Tartaglia and Viviana Cordeddu
Int. J. Mol. Sci. 2025, 26(7), 3278; https://doi.org/10.3390/ijms26073278 - 1 Apr 2025
Viewed by 515
Abstract
O-mannosylation is a post-translational modification required for the proper function of various proteins and critical for development and growth. POMGNT1 encodes the enzyme O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, which catalyzes the second step in the synthesis of α-dystroglycan O-mannosyl glycans. Among POMGNT1-related α-dystroglycanopathies, muscle–eye–brain [...] Read more.
O-mannosylation is a post-translational modification required for the proper function of various proteins and critical for development and growth. POMGNT1 encodes the enzyme O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, which catalyzes the second step in the synthesis of α-dystroglycan O-mannosyl glycans. Among POMGNT1-related α-dystroglycanopathies, muscle–eye–brain (MEB) disease presents with congenital muscular dystrophy, structural brain abnormalities, and retinal dystrophy. Defects in protein O-mannosylation due to biallelic loss-of-function POMGNT1 mutations produce disturbances in assembling and organizing the basal membrane in the neuroretinal system, involving both the central and peripheral nervous systems. In the retina, POMGNT1 is expressed in photoreceptors and is localized near the photoreceptor cilium basal body, a structure critical for protein transport. Recent studies have reported an isolated degenerative ocular phenotype without any involvement of muscular or neuronal tissues. Here, we report on a family with three siblings affected by an apparently isolated clinically variable retinal disease and sharing biallelic inactivating POMGNT1 variants. Notably, the rod-cone dystrophy phenotype in the three siblings varied significantly in onset, presentation, and severity. These findings provide further evidence of the clinical variability associated with defective POMGNT1 function. Full article
(This article belongs to the Special Issue Molecular Research in Retinal Degeneration)
Show Figures

Figure 1

15 pages, 5959 KiB  
Article
Molecular Study of the Fukutin-Related Protein (FKRP) Gene in Patients from Southern Italy with Duchenne/Becker-like Phenotype
by Antonio Qualtieri, Selene De Benedittis, Annamaria Cerantonio, Luigi Citrigno, Gemma Di Palma, Olivier Gallo, Francesca Cavalcanti and Patrizia Spadafora
Int. J. Mol. Sci. 2024, 25(19), 10356; https://doi.org/10.3390/ijms251910356 - 26 Sep 2024
Viewed by 1345
Abstract
Pathogenic variants localized in the gene coding for the Fukutin-Related Protein (FKRP) are responsible for Limb-Girdle Muscular Dystrophy type 9 (LGMDR9), Congenital Muscular Dystrophies type 1C (MDC1C), Walker–Warburg Syndrome (WWS), and Muscle–Eye–Brain diseases (MEBs). LGMDR9 is the fourth most common hereditary Limb Girdle [...] Read more.
Pathogenic variants localized in the gene coding for the Fukutin-Related Protein (FKRP) are responsible for Limb-Girdle Muscular Dystrophy type 9 (LGMDR9), Congenital Muscular Dystrophies type 1C (MDC1C), Walker–Warburg Syndrome (WWS), and Muscle–Eye–Brain diseases (MEBs). LGMDR9 is the fourth most common hereditary Limb Girdle Muscular Dystrophy in Italy. LGMDR9 patients with severe disease show an overlapping Duchenne/Becker phenotype and may have secondary dystrophin reduction on muscle biopsy. We conducted a molecular analysis of the FKRP gene by direct sequencing in 153 patients from Southern Italy (Calabria) with Duchenne/Becker-like phenotypes without confirmed genetic diagnosis. Mutational screening of the patients (112 men and 41 women, aged between 5 and 84 years), revealed pathogenic variants in 16 subjects. The most frequent variants identified were c.427C > A, p.R143S, and c.826C > A, p.L276I (NM_024301.5). The results obtained show that the Duchenne/Becker-like phenotype is frequently determined by mutations in the FKRP gene in our cohort and highlight the importance of considering LGMDR9 in the differential diagnosis of dystrophinopathies in Calabria. Finally, this study, which, to our knowledge, is the first conducted on Calabrian subjects, will contribute to the rapid identification and management of LGMDR9 patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 331 KiB  
Review
Integrative Treatment Approaches with Mind–Body Therapies in the Management of Atopic Dermatitis
by Gil Yosipovitch, Ludivine Canchy, Bárbara Roque Ferreira, Claudia C. Aguirre, Therdpong Tempark, Roberto Takaoka, Martin Steinhoff and Laurent Misery
J. Clin. Med. 2024, 13(18), 5368; https://doi.org/10.3390/jcm13185368 - 11 Sep 2024
Cited by 2 | Viewed by 3844
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathophysiology characterized by intense pruritus, often associated with psychological stress and atopic and non-atopic comorbidities that significantly reduce quality of life. The psychological aspects of AD and the interaction between the [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathophysiology characterized by intense pruritus, often associated with psychological stress and atopic and non-atopic comorbidities that significantly reduce quality of life. The psychological aspects of AD and the interaction between the mind and body via the skin–brain axis have led to an interest in mind–body therapies (MBT). The aim of this article is, therefore, to reinforce the importance of psychodermatological care in AD. We performed a focused literature review on holistic practices or integrative MBT in AD, including education, cognitive behavioral therapy, habit reversal, meditation, mindfulness, hypnotherapy, eye movement desensitization and reprocessing, biofeedback, progressive muscle relaxation, autonomous sensory meridian response, music therapy, massage, and touch therapy. A multidisciplinary holistic approach with MBT, in addition to conventional pharmacologic antipruritic therapies, to break the itch–scratch cycle may improve AD outcomes and psychological well-being. Although there is a paucity of rigorously designed trials, evidence shows the potential benefits of an integrative approach on pruritus, pain, psychological stress, anxiety, depressive symptoms, and sleep quality. Relaxation and various behavioral interventions, such as habit reversal therapy for replacing harmful scratching with massaging with emollient ‘plus’, may reduce the urge to scratch, while education may improve adherence to conventional therapies. Full article
(This article belongs to the Special Issue Pruritus and Psyche: An Update on Clinical Management)
35 pages, 770 KiB  
Review
Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update
by Rolf Teschke and Axel Eickhoff
Int. J. Mol. Sci. 2024, 25(9), 4753; https://doi.org/10.3390/ijms25094753 - 26 Apr 2024
Cited by 36 | Viewed by 7044
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic [...] Read more.
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber–Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser–Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge. Full article
Show Figures

Figure 1

18 pages, 2035 KiB  
Article
Comparing Several P300-Based Visuo-Auditory Brain-Computer Interfaces for a Completely Locked-in ALS Patient: A Longitudinal Case Study
by Rute Bettencourt, Miguel Castelo-Branco, Edna Gonçalves, Urbano J. Nunes and Gabriel Pires
Appl. Sci. 2024, 14(8), 3464; https://doi.org/10.3390/app14083464 - 19 Apr 2024
Cited by 2 | Viewed by 2603
Abstract
In a completely locked-in state (CLIS), often resulting from traumatic brain injury or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), patients lose voluntary muscle control, including eye movement, making communication impossible. Brain-computer interfaces (BCIs) offer hope for restoring communication, but achieving reliable communication [...] Read more.
In a completely locked-in state (CLIS), often resulting from traumatic brain injury or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), patients lose voluntary muscle control, including eye movement, making communication impossible. Brain-computer interfaces (BCIs) offer hope for restoring communication, but achieving reliable communication with these patients remains a challenge. This study details the design, testing, and comparison of nine visuo-auditory P300-based BCIs (combining different visual and auditory stimuli and different visual layouts) with a CLIS patient over ten months. The aim was to evaluate the impact of these stimuli in achieving effective communication. While some interfaces showed promising progress, achieving up to 90% online accuracy in one session, replicating this success in subsequent sessions proved challenging, with the average online accuracy across all sessions being 56.4 ± 15.2%. The intertrial variability in EEG signals and the low discrimination between target and non-target events were the main challenge. Moreover, the lack of communication with the patient made BCI design a challenging blind trial-and-error process. Despite the inconsistency of the results, it was possible to infer that the combination of visual and auditory stimuli had a positive impact, and that there was an improvement over time. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Novel Technologies and Applications)
Show Figures

Figure 1

9 pages, 4453 KiB  
Case Report
Case Series on Autosomal Recessive Non-Syndromic Retinitis Pigmentosa Caused by POMGNT1 Mutations with a Report of a New Variant
by Ami Patel, Ruifeng Cui, James Vernon Odom and Monique Leys
J. Clin. Med. 2023, 12(24), 7549; https://doi.org/10.3390/jcm12247549 - 7 Dec 2023
Cited by 3 | Viewed by 1555
Abstract
Recessive Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) mutations can cause early onset muscle–eye–brain disease but have also more recently been associated with non-syndromic Retinitis Pigmentosa. In this case series, we describe three sisters affected by non-syndromic autosomal recessive POMGNT1 retinopathy with a report of [...] Read more.
Recessive Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) mutations can cause early onset muscle–eye–brain disease but have also more recently been associated with non-syndromic Retinitis Pigmentosa. In this case series, we describe three sisters affected by non-syndromic autosomal recessive POMGNT1 retinopathy with a report of a new variant. The three patients received care at West Virginia University Eye Institute, including full ophthalmic examination with additional fundus imaging, optical coherence tomography (OCT), electroretinogram (ERG), and visual field testing. Diagnostic panel testing of 330 genes was also obtained. The proband was seen for cataract evaluation at age 42, and her fundus examination was suggestive of retinitis pigmentosa. Her oldest sister had been treated for acute anterior uveitis with retinal vasculitis. Another sister was diagnosed with multiple sclerosis (MS) and peripheral retinal degeneration. Posterior subcapsular cataracts were diagnosed between age 42 and 55 in all three sisters, each with constricted fields with preserved central vision. We identified one pathogenic POMGNT1 variant (c.751 + 1G > A) and one likely pathogenic variant (c.1010T > C p.Ile337Thr) in all three sisters. A thorough family history and examination of the siblings with genotyping might have led to an earlier diagnosis of retinal inherited disease and avoidance of immunomodulatory treatment in the oldest sibling. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

13 pages, 2070 KiB  
Article
Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data
by Vadim V. Yanshole, Arsenty D. Melnikov, Lyudmila V. Yanshole, Ekaterina A. Zelentsova, Olga A. Snytnikova, Nataliya A. Osik, Maxim V. Fomenko, Ekaterina D. Savina, Anastasia V. Kalinina, Kirill A. Sharshov, Nikita A. Dubovitskiy, Mikhail S. Kobtsev, Anatolii A. Zaikovskii, Sofia S. Mariasina and Yuri P. Tsentalovich
Metabolites 2023, 13(10), 1088; https://doi.org/10.3390/metabo13101088 - 17 Oct 2023
Cited by 6 | Viewed by 2425
Abstract
The Animal Metabolite Database (AMDB, https://amdb.online) is a freely accessible database with built-in statistical analysis tools, allowing one to browse and compare quantitative metabolomics data and raw NMR and MS data, as well as sample metadata, with a focus on the metabolite concentrations [...] Read more.
The Animal Metabolite Database (AMDB, https://amdb.online) is a freely accessible database with built-in statistical analysis tools, allowing one to browse and compare quantitative metabolomics data and raw NMR and MS data, as well as sample metadata, with a focus on the metabolite concentrations rather than on the raw data itself. AMDB also functions as a platform for the metabolomics community, providing convenient deposition and exchange of quantitative metabolomic data. To date, the majority of the data in AMDB relate to the metabolite content of the eye lens and blood of vertebrates, primarily wild species from Siberia, Russia and laboratory rodents. However, data on other tissues (muscle, heart, liver, brain, and more) are also present, and the list of species and tissues is constantly growing. Typically, every sample in AMDB contains concentrations of 60–90 of the most abundant metabolites, provided in nanomoles per gram of wet tissue weight (nmol/g). We believe that AMDB will become a widely used tool in the community, as typical metabolite baseline concentrations in tissues of animal models will aid in a wide variety of fundamental and applied scientific fields, including, but not limited to, animal modeling of human diseases, assessment of medical formulations, and evolutionary and environmental studies. Full article
(This article belongs to the Special Issue Open-Source Software in Metabolomics)
Show Figures

Graphical abstract

12 pages, 254 KiB  
Article
Hearing Impairment and Neuroimaging Results in Mitochondrial Diseases
by Gabriella Cadoni, Guido Primiano, Pasqualina M. Picciotti, Rosalinda Calandrelli, Jacopo Galli, Serenella Servidei and Guido Conti
J. Pers. Med. 2023, 13(9), 1329; https://doi.org/10.3390/jpm13091329 - 29 Aug 2023
Cited by 2 | Viewed by 1745
Abstract
Mitochondrial diseases (MDs) are heterogeneous genetic disorders characterized by mitochondrial DNA (mtDNA) defects, involving tissues highly dependent on oxidative metabolism: the inner ear, brain, eye, skeletal muscle, and heart. We describe adult patients with genetically defined MDs, characterizing hearing function and neuroimaging results. [...] Read more.
Mitochondrial diseases (MDs) are heterogeneous genetic disorders characterized by mitochondrial DNA (mtDNA) defects, involving tissues highly dependent on oxidative metabolism: the inner ear, brain, eye, skeletal muscle, and heart. We describe adult patients with genetically defined MDs, characterizing hearing function and neuroimaging results. We enrolled 34 patients (mean age: 50.02 ± 15 years, range: 18–75 years; 20 females and 14 males) classified in four groups: MELAS, MIDD, PEO, and Encephalopathy/Polyneuropathy. Audiological evaluations included psychoacoustical tests (pure-tone and speech audiometry), electrophysiological tests (Auditory Brainstem Responses, ABRs), and Impedenzometry. Neuroimaging evaluations considered global MRI abnormalities or structural brain changes. In total, 19/34 patients carried the m.3243A > G mutation (6 affected by MELAS, 12 affected by MIDD, and 1 affected by PEO); 11 had an mtDNA deletion (all affected by PEO); 3 had nuclear genes associated with MDs (POLG1 and OPA1); and 1 patient had an mtDNA deletion without an identified nuclear gene defect (affected by PEO). Sensory neural, bilateral, and symmetrical hearing loss was present in 25 patients (73.5%) to different degrees: 9 mild, 9 moderate, 5 severe, and 2 profound. The severe/profound and mild hearing losses were associated with pantonal and high-frequency audiograms, respectively. Instead, moderate hearing losses were associated with both high-frequency (five cases) and pantonal (five cases) audiogram shapes. In addition, 21/25 patients showed a cochlear site of lesion (84%), and 4/25 (16%) showed a retrocochlear site. We found global MRI abnormalities or structural brain changes in 26/30 subjects (86.6%): 21 had white matter abnormalities, 15 had cortical atrophy, 10 had subcortical atrophy, 8 had basal nuclei involvement or cerebellar atrophy, 4 had stroke-like lesions or laminar necrosis, and 1 had cysts or vacuolated lesions. We concluded that genetic alterations are associated with different clinical presentations for both auditory function and neuroradiological findings. There is no fixed relationship between genotype and phenotype for the clinical conditions analyzed. Full article
(This article belongs to the Section Clinical Medicine, Cell, and Organism Physiology)
18 pages, 4521 KiB  
Review
Myo/Nog Cells: The Jekylls and Hydes of the Lens
by Jacquelyn Gerhart and Mindy George-Weinstein
Cells 2023, 12(13), 1725; https://doi.org/10.3390/cells12131725 - 27 Jun 2023
Cited by 2 | Viewed by 3011
Abstract
Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors [...] Read more.
Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues. Full article
(This article belongs to the Special Issue New Advances in Lens Biology and Pathology)
Show Figures

Figure 1

11 pages, 1971 KiB  
Case Report
The Pitfall of White Blood Cell Cystine Measurement to Diagnose Juvenile Cystinosis
by Tjessa Bondue, Anas Kouraich, Sante Princiero Berlingerio, Koenraad Veys, Sandrine Marie, Khaled O. Alsaad, Essam Al-Sabban, Elena Levtchenko and Lambertus van den Heuvel
Int. J. Mol. Sci. 2023, 24(2), 1253; https://doi.org/10.3390/ijms24021253 - 9 Jan 2023
Cited by 1 | Viewed by 3631
Abstract
Cystinosis is an autosomal recessive lysosomal storage disease, caused by mutations in the CTNS gene, resulting in multi-organ cystine accumulation. Three forms of cystinosis are distinguished: infantile and juvenile nephropathic cystinosis affecting kidneys and other organs such as the eyes, endocrine system, muscles, [...] Read more.
Cystinosis is an autosomal recessive lysosomal storage disease, caused by mutations in the CTNS gene, resulting in multi-organ cystine accumulation. Three forms of cystinosis are distinguished: infantile and juvenile nephropathic cystinosis affecting kidneys and other organs such as the eyes, endocrine system, muscles, and brain, and adult ocular cystinosis affecting only the eyes. Currently, elevated white blood cell (WBC) cystine content is the gold standard for the diagnosis of cystinosis. We present a patient with proteinuria at adolescent age and corneal cystine crystals, but only slightly elevated WBC cystine levels (1.31 ½ cystine/mg protein), precluding the diagnosis of nephropathic cystinosis. We demonstrate increased levels of cystine in skin fibroblasts and urine-derived kidney cells (proximal tubular epithelial cells and podocytes), that were higher than the values observed in the WBC and healthy control. CTNS gene analysis shows the presence of a homozygous missense mutation (c.590 A > G; p.Asn177Ser), previously described in the Arab population. Our observation underlines that low WBC cystine levels can be observed in patients with juvenile cystinosis, which may delay the diagnosis and timely administration of cysteamine. In such patients, the diagnosis can be confirmed by cystine measurement in slow-dividing cells and by molecular analysis of the CTNS gene. Full article
Show Figures

Figure 1

34 pages, 2611 KiB  
Review
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis
by Christoph Schweingruber and Eva Hedlund
Biology 2022, 11(8), 1191; https://doi.org/10.3390/biology11081191 - 8 Aug 2022
Cited by 17 | Viewed by 7495
Abstract
Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading [...] Read more.
Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS. Full article
(This article belongs to the Special Issue Selective Vulnerability in Neurodegenerative Diseases)
Show Figures

Figure 1

9 pages, 2284 KiB  
Article
Expanding the Phenotype of B3GALNT2-Related Disorders
by Erika D’haenens, Sarah Vergult, Björn Menten, Annelies Dheedene, R. Frank Kooy and Bert Callewaert
Genes 2022, 13(4), 694; https://doi.org/10.3390/genes13040694 - 14 Apr 2022
Cited by 8 | Viewed by 2890
Abstract
Dystroglycanopathies are a group of congenital muscular dystrophies (CMDs) that include a broad phenotypic spectrum ranging from late-onset limb-girdle muscular dystrophy to severe muscle–eye–brain disease, Walker–Warburg syndrome, and Fukuyama congenital muscular dystrophy. In addition to clinical heterogeneity, CMDs are characterized by genetic heterogeneity. [...] Read more.
Dystroglycanopathies are a group of congenital muscular dystrophies (CMDs) that include a broad phenotypic spectrum ranging from late-onset limb-girdle muscular dystrophy to severe muscle–eye–brain disease, Walker–Warburg syndrome, and Fukuyama congenital muscular dystrophy. In addition to clinical heterogeneity, CMDs are characterized by genetic heterogeneity. To date, 18 genes have been associated with CMDs. One of them is B3GALNT2, which encodes the β-1,3-N-acetylgalactosaminyltransferase 2 that glycosylates α-dystroglycan. In this study, using exome sequencing, we identify a homozygous frameshift variant in B3GALNT2 due to a mixed uniparental disomy of chromosome 1 in a 7-year-old girl with global developmental delay, severely delayed active language development, and autism spectrum disorder but without any symptoms of muscular dystrophy. In addition to this case, we also provide an overview of all previously reported cases, further expanding the phenotypic spectrum. Full article
(This article belongs to the Special Issue Advances in Genetic Diagnosis for Neurodevelopmental Disorders)
Show Figures

Figure 1

13 pages, 298 KiB  
Article
The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study
by Anna Olczak, Aleksandra Truszczyńska-Baszak and Katarzyna Gniadek-Olejniczak
Diagnostics 2021, 11(11), 2036; https://doi.org/10.3390/diagnostics11112036 - 3 Nov 2021
Cited by 2 | Viewed by 2270
Abstract
Cerebral amyloid angiopathy (CAA) is one form of disease of the small vessels of the brain and can cause frequent cerebral hemorrhages as well as other types of stroke. The aim of the study was to analyze the static and dynamic balance of [...] Read more.
Cerebral amyloid angiopathy (CAA) is one form of disease of the small vessels of the brain and can cause frequent cerebral hemorrhages as well as other types of stroke. The aim of the study was to analyze the static and dynamic balance of the body and changes in the tension of selected muscles of the cervical spine in patients with CAA after stroke, depending on visual control or its absence, compared to healthy volunteers. Eight stroke patients and eight healthy subjects were examined. The functional Unterberger test and the Biodex SD platform were used to test the dynamic equilibrium, on which the static equilibrium was also assessed. Muscle tension was tested with the Luna EMG device. In static tests, the LC muscle (longus colli) was significantly more active with and without visual control (p = 0.016; p = 0.002), and in dynamic tests, significantly higher results for MOS (p = 0.046) were noted. The comparison of the groups led to the conclusion that the more functional deficits, the more difficult it is to keep balance, also with eye control. Full article
15 pages, 1877 KiB  
Article
Genotype Phenotype Correlation in Dent Disease 2 and Review of the Literature: OCRL Gene Pleiotropism or Extreme Phenotypic Variability of Lowe Syndrome?
by Lisa Gianesello, Jennifer Arroyo, Dorella Del Prete, Giovanna Priante, Monica Ceol, Peter C. Harris, John C. Lieske and Franca Anglani
Genes 2021, 12(10), 1597; https://doi.org/10.3390/genes12101597 - 11 Oct 2021
Cited by 13 | Viewed by 3413
Abstract
Dent disease is a rare X-linked renal tubulopathy due to CLCN5 and OCRL (DD2) mutations. OCRL mutations also cause Lowe syndrome (LS) involving the eyes, brain and kidney. DD2 is frequently described as a mild form of LS because some patients may present [...] Read more.
Dent disease is a rare X-linked renal tubulopathy due to CLCN5 and OCRL (DD2) mutations. OCRL mutations also cause Lowe syndrome (LS) involving the eyes, brain and kidney. DD2 is frequently described as a mild form of LS because some patients may present with extra-renal symptoms (ESs). Since DD2 is a rare disease and there are a low number of reported cases, it is still unclear whether it has a clinical picture distinct from LS. We retrospectively analyzed the phenotype and genotype of our cohort of 35 DD2 males and reviewed all published DD2 cases. We analyzed the distribution of mutations along the OCRL gene and evaluated the type and frequency of ES according to the type of mutation and localization in OCRL protein domains. The frequency of patients with at least one ES was 39%. Muscle findings are the most common ES (52%), while ocular findings are less common (11%). Analysis of the distribution of mutations revealed (1) truncating mutations map in the PH and linker domain, while missense mutations map in the 5-phosphatase domain, and only occasionally in the ASH-RhoGAP module; (2) five OCRL mutations cause both DD2 and LS phenotypes; (3) codon 318 is a DD2 mutational hot spot; (4) a correlation was found between the presence of ES and the position of the mutations along OCRL domains. DD2 is distinct from LS. The mutation site and the mutation type largely determine the DD2 phenotype. Full article
(This article belongs to the Collection Genotype-Phenotype Study in Disease)
Show Figures

Graphical abstract

16 pages, 3937 KiB  
Article
A Novel UPLC-MS/MS Method Identifies Organ-Specific Dipeptide Profiles
by Elena Heidenreich, Tilman Pfeffer, Tamara Kracke, Nils Mechtel, Peter Nawroth, Georg F Hoffmann, Claus Peter Schmitt, Rüdiger Hell, Gernot Poschet and Verena Peters
Int. J. Mol. Sci. 2021, 22(18), 9979; https://doi.org/10.3390/ijms22189979 - 15 Sep 2021
Cited by 11 | Viewed by 4708
Abstract
Background: Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. Method: We established a sensitive, rapid and reliable UPLC-MS/MS method for [...] Read more.
Background: Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. Method: We established a sensitive, rapid and reliable UPLC-MS/MS method for quantification of 36 dipeptides. Dipeptide patterns were analyzed in brown and white adipose tissues, brain, eye, heart, kidney, liver, lung, muscle, sciatic nerve, pancreas, spleen and thymus, serum and urine of C57BL/6N wildtype mice and related to the corresponding amino acid profiles. Results: A total of 30 out of the 36 investigated dipeptides were detected with organ-specific distribution patterns. Carnosine and anserine were most abundant in all organs, with the highest concentrations in muscles. In liver, Asp-Gln and Ala-Gln concentrations were high, in the spleen and thymus, Glu-Ser and Gly-Asp. In serum, dipeptide concentrations were several magnitudes lower than in organ tissues. In all organs, dipeptides with C-terminal proline (Gly-Pro and Leu-Pro) were present at higher concentrations than dipeptides with N-terminal proline (Pro-Gly and Pro-Leu). Organ-specific amino acid profiles were related to the dipeptide profile with several amino acid concentrations being related to the isomeric form of the dipeptides. Aspartate, histidine, proline and serine tissue concentrations correlated with dipeptide concentrations, when the amino acids were present at the C- but not at the N-terminus. Conclusion: Our multi-dipeptide quantification approach demonstrates organ-specific dipeptide distribution. This method allows us to understand more about the dipeptide metabolism in disease or in healthy state. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop