The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Ethics
2.3. Patients and Subjects
2.4. Functional Assessment Tools
2.5. Measurements
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
3.1. Static Balance
3.2. Dynamic Balance
3.3. Assessment of Muscle Tension
3.3.1. Eyes Open vs Eyes Closed
3.3.2. Unterberger Test vs. Stable Platform (PS)
3.3.3. Unterberger Test vs. Unstable Platform (PNS)
3.3.4. PS vs. PNS
4. Discussion
4.1. Research Value
4.2. Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Clinical Trial Registration-URL
References
- Arvanitakis, Z.; Leurgans, S.E.; Wang, Z.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann. Neurol. 2010, 69, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Panicker, J.N.; Nagaraja, D.; Yasha, T.; Chickabasaviah, Y.T. Cerebral amyloid angiopathy: A clinicopathological study of three cases. Ann. Ind. Acad. Neurol. 2010, 13, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Samarasekera, N.; Smith, C.; Salman, R.A.S. The association between cerebral amyloid angiopathy and intracerebral haemorrhage: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 275–281. [Google Scholar] [CrossRef]
- Gray, F.; Dubas, F.; Rouller, E.; Escourolle, R. Leukoencephalopathy in diffuse hemorrhagic cerebral amyloid angiopathy. Ann. Neurol. 1985, 18, 54–59. [Google Scholar] [CrossRef]
- Liberski, P.P.; Barcikowska, M. Pathology of the vessels in cerebral amyloid angiopathy. Folia Neuropathol. 1995, 33, 207–214. [Google Scholar]
- Greenberg, S.M.; Edgar, M.A. Case records of the Massachusetts General Hospital: Weekly clinicopathological exercises. Case 22-1996. Cerebral hemorrhage in a 69-year-old woman receiving warfarin. N. Engl. J. Med. 1996, 335, 189–196. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Vonsattel, J.P.G. Diagnosis of cerebral amyloid angiopathy: Sensitivity and specificity of cortical biopsy. Stroke 1997, 28, 1418–1422. [Google Scholar] [CrossRef]
- McCarron, M.O.; Nicoll, J.A.R. High frequency of apolipoprotein E e2 allele is specific for patients with cerebral amyloid angiopathy-related haemorrhage. Neurosci. Lett. 1998, 247, 45–48. [Google Scholar] [CrossRef]
- Smith, E.E.; Greenberg, S.M. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston criteria. Curr. Atheroscler. Rep. 2003, 5, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, E.; Lewandowska, E.; Stępień, T.; Szpak, G.M.; Pasennik, E.; Modzelewska, J. Amyloid angiopathy in idiopathic Parkinson’s disease. Immunohistochemical and ultrastructural study. Folia Neuropathol. 2008, 46, 255–270. [Google Scholar]
- Bertrand, E.; Lewandowska, E.; Mendel, T.; Stepień, T.; Szpak, G.M.; Wierzba-Bobrowicz, T.; Członkowska, A. Zaawansowana angiopatia amyloidowa w otępieniu z ciałami Lewy’ego. Badania immunohistochemiczne oraz ultrastrukturalne. Folia Neuropathol. 2008, 46, 294–295. [Google Scholar]
- Eurelings, L.M.S.; Richard, E.; Carrano, A.; Eikelenboom, P.; Van Gool, W.A.; Rozemuller, A.J.M. Dysphoric capillary cerebral amyloid angiopathy mimicking Creutzfeldt-Jakob disease. J. Neurol. Sci. 2010, 295, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Mendel, T.; Bertrand, E.; Szpak, G.M.; Stepień, T.; Wierzba-Bobrowicz, T. Cerebral amyloid angiopathy as a cause of an extensive brain hemorrhage in adult patient with Down’s syndrome—A case report. Folia Neuropathol. 2010, 48, 206–211. [Google Scholar] [PubMed]
- Mendel, T.; Bertrand, E.; Szpak, G.M.; Stępień, T.; Wierzba-Bobrowicz, T. Complications of severe cerebral amyloid angiopathy in the course of dementia with Lewy bodies. A case report. Folia Neuropathol. 2010, 48, 293–299. [Google Scholar] [PubMed]
- Mendel, T. Mózgowa Angiopatia Amyloidowa w Krwotokach Mózgowych. In Monografia Neurologiczna; IPIN: Warszawa, Poland, 2013. [Google Scholar]
- Karbowniczek, A.; Wierzba-Bobrowicz, T.; Mendel, T.; Nauman, P. Cerebral amyloid angiopathy manifestated as a brain tumour. Clinical and neuropathological characteristics of two cases. Folia Neuropathol. 2012, 50, 194–200. [Google Scholar] [PubMed]
- Pontes-Neto, O.M.; Auriel, E.; Greeberg, S.M. Advances in our understanding of the pathophysiology, detection and management of cerebral amyloid angiopathy. Eur. Neurol. Rev. 2012, 7, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendel, T.A.; Wierzba-Bobrowicz, T.; Stępień, T.; Szpak, G.M. The association between cerebral amyloid angiopathy and atherosclerosis in patients with intracerebral hemorrhages. Folia Neuropathol. 2013, 51, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revesz, T.; Holton, J.L.; Lashley, T.; Plant, G.; Frangione, B.; Rostagno, A.; Ghiso, J. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol. 2009, 118, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Attems, J.; Jellinger, K.A.; Lintner, F. Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol. 2005, 110, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Spatial distribution of hemorrhages in cerebral amyloid angiopathy. Ann. Neurol. 2006, 59, 215. [Google Scholar] [CrossRef]
- Maia, L.F.; Vasconcelos, C.; Seixas, S.; Magalhāes, R.; Correia, M. Lobar brain hemorrhages and white matter changes: Clinical. radiological and laboratorial profiles. Cerebrovasc. Dis. 2006, 22, 155–161. [Google Scholar] [CrossRef]
- Hannaford, P.C.; Simpson, J.A.; Bisset, A.F.; Davis, A.; McKerrow, W.; Mills, R. The prevalence of ear, nose and throat problems in the community: Results from a national cross-sectional postal survey in Scotland. Fam. Pract. 2005, 22, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, G.; Abu-Arafeh, I. Paroxysmal vertigo in children—An epidemiological study. Int. J. Pediatr. Otorhinolaryngol. 1999, 49, 105–107. [Google Scholar] [CrossRef]
- Hauser, S.; Josephson, S. Harrison’s Neurology in Clinical Medicine; McGraw Hill Professional: New York, NY, USA, 2010. [Google Scholar]
- Neuhauser, H.K.; Von Brevern, M.; Radtke, A.; Lezius, F.; Feldmann, M.; Ziese, T.; Lempert, T. Epidemiology of vestibular vertigo: A neurotologic survey of the general population. Neurology 2005, 65, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Seemungal, B.M. Neuro-otological emergencies. Curr. Opin. Neurol. 2007, 20, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Koskimies, K.; Sutinen, P.; Aalto, H.; Starck, J.; Toppila, E.; Hirvonen, T.; Kaksonen, R.; Ishizaki, H.; Alaranta, H.; Pyykkö, I. Postural Stability, Neck Proprioception and Tension Neck. Acta Oto-Laryngologica 1997, 117, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Minguet, M.; Gregory, P.; Vaillant, J.; Manuel, J.L. Changes in cervicocephalic kinesthesia after a proprioceptive rehabilitation program in patients with neck pain: A randomized controlled study. Arch. Phys. Med. Rehabil. 1994, 75, 895–899. [Google Scholar] [CrossRef]
- Pyykkö, I.; Aalto, H.; Seidel, H.; Starck, J. Hierarchy of Different Muscles in Postural Control. Acta Oto-Laryngologica 1989, 108, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Peck, D.; Buxton, D.F.; Nitz, A. A comparison of spindle concentrations in large and small muscles acting in parallel combination. J. Morphol. 1984, 180, 243–252. [Google Scholar] [CrossRef]
- Rix, G.D.; Bagust, J. Cervicocephalic kinesthetic sensibility in patients with chronic. nontraumatic cervical spine pain. Arch. Phys. Med. Rehabil. 2001, 82, 911–919. [Google Scholar] [CrossRef]
- Drake, R.; Vogl, W.; Mitchell, A. Gray’s Anatomy for Students, 2nd ed.; Churchill Livingstone Elsevier: London, UK, 2016. [Google Scholar]
- Djupsjöbacka, M.; Johansson, H.; Bergenheim, M.; Sjölander, P. Influences on the gamma-muscle-spindle system from contralateral muscle afferents stimulated by KCl and lactic acid. Neurosci. Res. 1995, 21, 301–309. [Google Scholar] [CrossRef]
- Gogia, P.; Sabbahi, M. Median frequency of the myoelectric signal in cervical paraspinal muscles. Arch. Phys. Med. Rehabil. 1990, 71, 408–414. [Google Scholar] [PubMed]
- Margolesky, J.; Singer, C. How tandem gait stumbled into the neurological exam: A review. Neurol. Sci. 2017, 39, 23–29. [Google Scholar] [CrossRef]
- Haddas, R.; Ju, K.L.; Boah, A.; Kosztowski, T.; Derman, P.B. The Effect of Surgical Decompression on Functional Balance Testing in Patients with Cervical Spondylotic Myelopathy. Clin. Spine Surg. 2019, 32, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Dallah, Y.; Kyung-Chung, K.; Jung-Hee, L.; KiYoung, L.; In-Uk, H. Diagnostic usefulness of 10-step tandem gait test for the patient with degenerative cervical myelopathy. Sci. Rep. 2021, 11, 17212. [Google Scholar]
- Hickey, S.A.; Ford, G.R.; Buckley, J.G.; O’Connor, A.F.F. Unterberger stepping test: A useful indicator of peripheral vestibular dysfunction? J. Laryngol. Otol. 1990, 104, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Shupert, C. Função do Sistema Vestibular no Controle Postural. In Reabilitação Vestibular, 2nd ed.; Herdman, S.J., Ed.; Manole: São Paulo, Brazil, 2002; pp. 25–46. [Google Scholar]
- Colafêmina, J.F. Causas periféricas da vertigem. In Tratado de Otorrinolaringologia; Roca: São Paulo, Brazil, 2003; Volume 2, pp. 425–459. [Google Scholar]
- Fernandes, A.C.G.; Zamberlan-Amorim, N.E.; Zanchetta, S. Association between the Unterberger-Fukuda test and vectoelectronystagmography. Rev. CEFAC 2018, 20, 145–153. [Google Scholar] [CrossRef] [Green Version]
- De Wit, N.M.; Snkhchyan, H.; Hoedt, S.D.; Wattimena, D.; De Vos, R.; Mulder, M.T.; Walter, J.; Martinez-Martinez, P.; Hoozemans, J.J.; Rozemuller, A.J.; et al. Altered Sphingolipid Balance in Capillary Cerebral Amyloid Angiopathy. J. Alzheime. Dis. 2017, 60, 795–807. [Google Scholar] [CrossRef]
- Jäkel, L.; Kuiperij, H.B.; Gerding, L.P.; Custers, E.M.; Van den Berg, E.; Jolink, W.M.T.; Schreuder, F.H.B.M.; Küsters, B.; Klijn, C.J.M.; Verbeek, M.M. Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage. Acta Neuropathol. Commun. 2020, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Attems, J. Cerebral amyloid angiopathy in Lewy body disease. J. Neural. Transm. 2008, 115, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.L.; Hareendran, A.; Grant, M.; Baird, T.; Schulz, U.G.; Muir, K.W.; Bone, I. Improving the assessment of outcomes in stroke: Use of a structured interview to assign grades on the Modified Rankin Scale. Stroke 2002, 33, 2243–2246. [Google Scholar] [CrossRef] [PubMed]
- Rankin, J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott. Med. J. 1957, 2, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; Van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, C.; Wade, D. Assessing motor impairment after stroke: A pilot reliability study. J Neurol. Neurosurg. Psychiatry 1990, 53, 576–579. [Google Scholar] [CrossRef] [Green Version]
- Franchignoni, F.P.; Tesio, L.; Ricupero, C.; Martino, M.T. Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke 1997, 28, 1382–1385. [Google Scholar] [CrossRef]
- Bohannon, R.; Smith, M. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.A.; Alvarez, M.M.; Jett, R.E.; Axtell, R.S.; Kemler, D.S. Biodex Balance System Assessment Amoung Subject of Disparate Balancing Abilities. In Proceedings of the 46th Annual Meeting of the American College of Sports Medicine, Seattle, WA, USA, 2–5 June 1999. [Google Scholar]
- Biodex Medical Systems, Inc. Balance System SD. User Manual; Biodex Medical Systems, Inc.: Shirley, NY, USA, 2008. [Google Scholar]
- Vitti, M.; Fujiwara, M.; Basmajian, J.V.; Iida, M. The integrated roles of longus colli and sternocleidomastoid muscles: An electromyographic study. Anat. Rec. 1973, 177, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Schtildt, K. On neck muscle activity and load reduction in sitting postures. Scand. J. Rehab. Med. 1988, 19, 2–49. [Google Scholar]
- Latash, M.; Huang, X. Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience 2015, 301, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Norré, M.E.; Forrez, G.; Stevens, A.; Beckers, A. Cercical vertigo diagnosed by posturography? Preliminary report. Acta Otorhinolaryngol. Belg. 1987, 41, 574–581. [Google Scholar] [PubMed]
- Colosimo, C.; Gaudino, S.; Alexandre, A.M. Imaging in Degenerative Spine Pathology. Acta Neurochir. Suppl. 2011, 108, 9–15. [Google Scholar] [CrossRef]
- Sipko, T.; Bieć, E.; Demczuk-Włodarczyk, E.; Ciesielska, B. Mobility of cervical spine and postural equilibrium in patients with spinal overload syndrome. Ortop. Traumatol. Rehabil. 2007, 9, 141–148. [Google Scholar]
- Sipko, T.; Mraz, M.; Curzytek, M.; Basamania, A. Wpływ fizjoterapii na równowagę ciała osób z zawrotami głowy pochodzenia szyjnego. Acta Bio-Opt. Inform. Medica Inżynieria Biomed. 2007, 13, 316–320. [Google Scholar]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Lestienne, F. Motor Control and Learning; Springer: New York, NY, USA, 2010; pp. 250–257. [Google Scholar]
- Cerda-Lugo, A.; González, A.; Cardenas, A.; Piovesan, D. Modeling the neuro-mechanics of human balance when recovering from a fall: A continuous-time approach. BioMed Eng. OnLine 2020, 19, 1–25. [Google Scholar] [CrossRef]
Total Number of Patients n = 16 (100%) | Post-Stroke CAA n = 8 (50%) | Healthy Controls n = 8 (50%) | ||
---|---|---|---|---|
sex | Female | Male | Female | Male |
n/% | 6 (75%) | 2 (25%) | 6 (75%) | 2 (25%) |
Age range, years | 55–68 | 57–90 | 56–82 | 56–58 |
Cerebral ischemic stroke n/% | 3 (37.5%) | N/A | ||
Cerebral hemorrhage stroke n/% | 2 (25%) | N/A | ||
Cerebellum ischemic stroke n/% | 3 (37.5%) | N/A | ||
Time post stroke (week); acute | 7–9 | N/A | ||
Right affected side | 5 (62.5%) | N/A | ||
Left affected side | 3 (37.5%) | N/A |
Group | Age | Height | Body Mass | BMI |
---|---|---|---|---|
Stroke CAA ± SD | 65.38 ± 11.34 | 168.25 ± 5.87 | 72.00 ± 6.48 | 25.44 ± 1.88 |
Control ± SD | 64.50 ± 9.83 | 167.88 ± 9.11 | 72.63 ± 10.21 | 25.78 ± 2.88 |
Wilcoxon U | 30.50 | 29.00 | 28.00 | 32.00 |
Z | −0.16 | −0.32 | −0.42 | 0.00 |
p | 0.874 | 0.752 | 0.674 | 1.000 |
effect size | 0.04 | 0.08 | 0.11 | <0.01 |
Stroke (n = 8) | Healthy (n = 8) | Z | p | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average Rank | M | Me | SD | Average Rank | M | Me | SD | ||||
Eyes open | |||||||||||
Anterior | 11.50 | 1.01 | 1.09 | 0.37 | 5.50 | 0.43 | 0.38 | 0.13 | −2.52 | 0.012 | 0.63 |
Posterior | 11.50 | 0.86 | 0.86 | 0.34 | 5.50 | 0.43 | 0.42 | 0.08 | −2.52 | 0.012 | 0.63 |
Medial | 11.63 | 0.53 | 0.60 | 0.19 | 5.38 | 0.20 | 0.20 | 0.07 | −2.63 | 0.009 | 0.66 |
Lateral | 11.38 | 0.49 | 0.55 | 0.18 | 5.63 | 0.21 | 0.21 | 0.07 | −2.42 | 0.016 | 0.60 |
Eyes closed | |||||||||||
Anterior | 12.50 | 1.38 | 1.44 | 0.17 | 4.50 | 0.65 | 0.58 | 0.17 | −3.36 | 0.001 | 0.84 |
Posterior | 12.50 | 1.26 | 1.25 | 0.30 | 4.50 | 0,59 | 0.59 | 0.06 | −3.36 | 0.001 | 0.84 |
Medial | 11.13 | 0.97 | 1.04 | 0.39 | 5.88 | 0.46 | 0.47 | 0.08 | −2.21 | 0.027 | 0.55 |
Lateral | 11.25 | 0.91 | 0.93 | 0.43 | 5.75 | 0.37 | 0.39 | 0.09 | −2.31 | 0.021 | 0.58 |
Stroke (n = 8) | Healthy (n = 8) | Z | p | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average Rank | M | Me | SD | Average Rank | M | Me | SD | ||||
Eyes open | |||||||||||
unstable platform 2/6 frontal | 10.19 | 4.69 | 4.60 | 1.46 | 6.81 | 3.79 | 3.50 | 1.64 | −1.42 | 0.156 | 0.35 |
unstable platform 2/6 sagittal | 7.88 | 3.46 | 2.56 | 1.41 | 9.13 | 3.46 | 3.03 | 1.28 | −0.53 | 0.600 | 0.13 |
Eyes closed | |||||||||||
unstable platform 2/6 frontal | 11.31 | 6.38 | 6.20 | 1.09 | 5.69 | 4.70 | 4.55 | 1.61 | −2.36 | 0.018 | 0.59 |
unstable platform 2/6 sagittal | 8.50 | 4.16 | 4.07 | 0.91 | 8.50 | 4.28 | 3.84 | 1.30 | 0.00 | 1.000 | 0.00 |
Eyes Open | Eyes Closed | Z | p | r | |||||
---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | ||||
Stroke | |||||||||
unstable platform 2/6 frontal | 4.69 | 4.60 | 1.46 | 6.38 | 6.20 | 1.09 | −2.52 | 0.012 | 0.63 |
unstable platform 2/6 sagittal | 3.46 | 2.56 | 1.41 | 4.16 | 4.07 | 0.91 | −1.12 | 0.263 | 0.63 |
Healthy | |||||||||
unstable platform 2/6 frontal | 3.79 | 3.50 | 1.64 | 4.70 | 4.55 | 1.61 | −2.52 | 0.012 | 0.63 |
unstable platform 2/6 sagittal | 3.46 | 3.03 | 1.28 | 4.28 | 3.84 | 1.30 | −2.52 | 0.012 | 0.63 |
Stroke (n = 8) | Healthy (n = 8) | Z | p | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average Rank | M | Me | SD | Average Rank | M | Me | SD | ||||
Unterberger test | |||||||||||
(EO) tension SCM | 10.63 | 13.13 | 13.24 | 8.79 | 6.38 | 7.45 | 7.88 | 3.65 | −1.79 | 0.074 | 0.45 |
(EO) tension LC | 8.00 | 19.23 | 16.96 | 13.53 | 9.00 | 22.28 | 17.85 | 11.88 | −0.42 | 0.674 | 0.11 |
(EC) tension SCM | 10.88 | 20.23 | 18.38 | 11.45 | 6.13 | 10.34 | 9.85 | 3.34 | −2.00 | 0.046 | 0.50 |
(EC) tension LC | 7.88 | 23.70 | 22.12 | 12.12 | 9.13 | 27.16 | 23.67 | 14.07 | −0.53 | 0.600 | 0.13 |
Stable platform (PS) | |||||||||||
(EO) tension SCM | 10.25 | 20.43 | 13.32 | 16.99 | 6.75 | 10.43 | 9.21 | 5.50 | −1.47 | 0.141 | 0.37 |
(EO) tension LC | 11.38 | 23.85 | 19.09 | 11.29 | 5.63 | 16.14 | 14.35 | 5.12 | −2.42 | 0.016 | 0.60 |
(EC) tension SCM | 10.50 | 20.17 | 15.30 | 13.18 | 6.50 | 10.63 | 10.02 | 5.18 | −1.68 | 0.093 | 0.42 |
(EC) tension LC | 12.13 | 25.14 | 21.21 | 11.08 | 4.88 | 14.98 | 14.54 | 2.68 | −3.05 | 0.002 | 0.76 |
Unstable platform (PNS) | |||||||||||
(EO) tension SCM | 11.13 | 22.81 | 15.86 | 16.23 | 5.88 | 10.27 | 8.36 | 5.29 | −2.21 | 0.027 | 0.78 |
(EO) tension LC | 10.38 | 24.93 | 22.40 | 10.25 | 6.63 | 17.75 | 17.55 | 6.60 | −1.58 | 0.115 | 0.56 |
(EC) tension SCM | 11.38 | 24.10 | 18.07 | 16.10 | 5.63 | 10.40 | 8.85 | 5.20 | −2.42 | 0.016 | 0.85 |
(EC) tension LC | 10.75 | 26.47 | 24.38 | 10.36 | 6.25 | 18.03 | 17.83 | 5.62 | −1.89 | 0.059 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olczak, A.; Truszczyńska-Baszak, A.; Gniadek-Olejniczak, K. The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study. Diagnostics 2021, 11, 2036. https://doi.org/10.3390/diagnostics11112036
Olczak A, Truszczyńska-Baszak A, Gniadek-Olejniczak K. The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study. Diagnostics. 2021; 11(11):2036. https://doi.org/10.3390/diagnostics11112036
Chicago/Turabian StyleOlczak, Anna, Aleksandra Truszczyńska-Baszak, and Katarzyna Gniadek-Olejniczak. 2021. "The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study" Diagnostics 11, no. 11: 2036. https://doi.org/10.3390/diagnostics11112036
APA StyleOlczak, A., Truszczyńska-Baszak, A., & Gniadek-Olejniczak, K. (2021). The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients—A Pilot Study. Diagnostics, 11(11), 2036. https://doi.org/10.3390/diagnostics11112036