Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = multisensory transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8848 KiB  
Article
Multisensory Spatial Analysis and NDT Active Magnetic Method for Quick Area Testing of Reinforced Concrete Structures
by Paweł Karol Frankowski and Tomasz Chady
Materials 2023, 16(23), 7296; https://doi.org/10.3390/ma16237296 - 23 Nov 2023
Cited by 2 | Viewed by 1356
Abstract
This paper aims to present multisensory spatial analysis (MSA). The method was designed for the quick, simultaneous identification of concrete cover thickness h, rebar diameter, and alloys of reinforcement in large areas of reinforced concrete (RC) structures, which is a complex and [...] Read more.
This paper aims to present multisensory spatial analysis (MSA). The method was designed for the quick, simultaneous identification of concrete cover thickness h, rebar diameter, and alloys of reinforcement in large areas of reinforced concrete (RC) structures, which is a complex and unsolved issue. The main idea is to divide one complex problem into three simple-to-solve and based on separate premises tasks. In the transducers designed with the MSA, sensors are arranged spatially. This arrangement identifies each RC parameter separately based on the different waveforms/attributes. The method consists of three steps. All steps are described in the paper and supported by simulations and statistical analysis of the measurement. The tests were carried out using an Anisotropic Magneto-resistance (AMR) sensor. The AMR sensors can measure strong DC magnetic fields and can be combined in spatial transducers because of their small size. The selection of the sensor was extensively justified in the introduction section. The spatial transducer and the identification’s simplicity can allow for high accuracy in the real-time area testing of all three parameters. The risk of misclassification of discrete parameters was strongly reduced, and the h parameter can be identified with millimeter accuracy. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 998 KiB  
Review
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis
by Martina Perin, Giorgia Chinigò, Tullio Genova, Federico Mussano and Luca Munaron
Antioxidants 2023, 12(3), 689; https://doi.org/10.3390/antiox12030689 - 10 Mar 2023
Cited by 10 | Viewed by 3641
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In [...] Read more.
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events. Full article
Show Figures

Graphical abstract

16 pages, 609 KiB  
Article
Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study
by Marco Santonico, Giorgio Pennazza, Simone Grasso, Arnaldo D'Amico and Mariano Bizzarri
Sensors 2013, 13(12), 16625-16640; https://doi.org/10.3390/s131216625 - 4 Dec 2013
Cited by 56 | Viewed by 8454
Abstract
Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the [...] Read more.
Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1–7 ppm) and as a liquid sensor array (concentration range 73–98 μM). Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Back to TopTop