Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = multilevel–multicell converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 8054 KB  
Review
Solid State Transformers: A Review—Part I: Stages of Conversion and Topologies
by Dragoș-Mihail Predescu and Ștefan-George Roșu
Technologies 2025, 13(2), 74; https://doi.org/10.3390/technologies13020074 - 10 Feb 2025
Cited by 2 | Viewed by 8326
Abstract
Solid State Transformers (SSTs) represent an emerging technology that seeks to improve upon traditional Low-Frequency Transformers (LFTs) with Medium-Frequency Transformers (MFTs) of reduced core size while incorporating modular converter structures as their input and output stages. In addition to magnetic circuit reduction, SSTs [...] Read more.
Solid State Transformers (SSTs) represent an emerging technology that seeks to improve upon traditional Low-Frequency Transformers (LFTs) with Medium-Frequency Transformers (MFTs) of reduced core size while incorporating modular converter structures as their input and output stages. In addition to magnetic circuit reduction, SSTs provide enhanced functionalities such as power factor correction, voltage regulation, and the capability to interface with various sources and loads. However, owing to the novelty of SSTs and the various proposed implementations, a general review would difficult to follow and might not be able to adequately analyze each aspect of SST structures. This complexity underscores the need for a new division of information and classification based on the number of conversion stages, which is the main contribution of this study. Converter functionalities are derived based on the number of stages. Utilizing these functionalities along with existing and proposed implementations, converter topologies are identified and then detailed in terms of their respective functionalities, advantages, disadvantages, and control schemes. The subsequent chapters provide a comparative analysis of the different topologies and present existing SST implementations. For this analysis, metrics such as the number of SST stages, power flow, voltage control, power quality, and component count are used. Based on the resulting analysis, single-stage SSTs are a promising solution that emphasize economy and high power density, while multi-stage SSTs are also a viable solution thanks to their ease of control and flexible design. This paper constitutes the first part of a two-part review. The second part will focus on the degrees of design freedom (such as multilevel structures/cells) and provide a generalized approach to modularity within SST systems. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

30 pages, 13507 KB  
Review
Solid-State Transformers: A Review—Part II: Modularity and Applications
by Dragoș-Mihail Predescu and Ștefan-George Roșu
Technologies 2025, 13(2), 50; https://doi.org/10.3390/technologies13020050 - 28 Jan 2025
Cited by 2 | Viewed by 6070
Abstract
The Solid-State Transformer (SST) is a complex conversion device that intends to replace the Low-Frequency Transformers (LFTs) used in various power applications with Medium- or High-Frequency Transformers (MFTs/HFTs) that integrate modular converter structures as their input and output stages. The purpose is to [...] Read more.
The Solid-State Transformer (SST) is a complex conversion device that intends to replace the Low-Frequency Transformers (LFTs) used in various power applications with Medium- or High-Frequency Transformers (MFTs/HFTs) that integrate modular converter structures as their input and output stages. The purpose is to obtain additional capabilities, such as power factor correction, voltage control, and interconnection of distributed supplies, among others, while reducing the overall volume. Given the expansive research conducted in this area in the past years, the volume of information available is large, so the main contribution of this paper is a new method of classification based on the modular construction of the SST derived from its applications and available constructive degrees of freedom. This paper can be considered the second part of a broader review in which the first part presented the fundamental converter roles and topologies. As a continuation, this paper aims to expand the definition of modularity to the entire SST structure and analyze how the converters can be combined in order to achieve the desired SST functionality. Three areas of interest are chosen: partitioning of power, phase modularity, and port configuration. The partitioning of power analyzes the fundamental switching cells and the arrangement of the converters across stages. Phase modularity details the construction of multiphase-system SSTs. Finally, the types of input/output ports, their placements, and roles are discussed. These characteristics are presented together with the applications in which they were suggested to give a broader context. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

25 pages, 7031 KB  
Article
A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters
by Phu Cong Nguyen, Quoc Dung Phan and Dinh Tuyen Nguyen
Energies 2022, 15(3), 1010; https://doi.org/10.3390/en15031010 - 29 Jan 2022
Cited by 11 | Viewed by 3983
Abstract
This paper proposes a decentralized control structure and method for a multilevel single-phase power converter using space vector pulse width modulation (SVPWM). The focus of this paper is on the decentralized control structure for the power converter cells that will exchange information with [...] Read more.
This paper proposes a decentralized control structure and method for a multilevel single-phase power converter using space vector pulse width modulation (SVPWM). The focus of this paper is on the decentralized control structure for the power converter cells that will exchange information with neighboring cells in order to adjust the switching vector and switching time for each cell. In this study, the switching vectors and the corresponding switching times of each cell will be self-determined based on the phase angle of two neighboring cells. Normally, SVPWM applied to the multilevel power converters need complete information about the total cells and cell’s position to build a control algorithm. Meanwhile, a decentralized space vector pulse width modulation (DSVPWM) method is proposed that can be applied to power converters with any number of cells and can be considered as a multilevel SVPWM method. In addition, the decentralized multilevel single-phase power converter has high flexibility with which it is possible to easily adjust the number of active cells, so that the output voltage can be adjusted quickly; this provides the ability to dynamically reconfigure without interrupting the power energy supply process. The proposed control structure and method are effectively verified based on simulation and experimental results. Experimental results are evaluated based on a 9-level single-phase power converter, which has an RL load with rated parameters 220 V/500 W. Full article
(This article belongs to the Special Issue Multilevel Converter Topology, Design, and Applications)
Show Figures

Figure 1

21 pages, 12063 KB  
Article
High-Performance 3-Phase 5-Level E-Type Multilevel–Multicell Converters for Microgrids
by Marco di Benedetto, Alessandro Lidozzi, Luca Solero, Fabio Crescimbini and Petar J. Grbović
Energies 2021, 14(4), 843; https://doi.org/10.3390/en14040843 - 5 Feb 2021
Cited by 14 | Viewed by 3641
Abstract
This paper focuses on the analysis and design of two multilevel–multicell converters (MMCs), named 3-phase 5-Level E-Type Multilevel–Multicell Rectifier (3Φ5L E-Type MMR) and 3-phase 5-Level E-Type Multilevel–Multicell Inverter (3Φ5L E-Type MMI) to be used in microgrid applications. The proposed 3-phase E-Type multilevel rectifier [...] Read more.
This paper focuses on the analysis and design of two multilevel–multicell converters (MMCs), named 3-phase 5-Level E-Type Multilevel–Multicell Rectifier (3Φ5L E-Type MMR) and 3-phase 5-Level E-Type Multilevel–Multicell Inverter (3Φ5L E-Type MMI) to be used in microgrid applications. The proposed 3-phase E-Type multilevel rectifier and inverter have each phase being accomplished by the combination of two I-Type topologies connected to the T-Type topology. The two cells of each phase of the rectifier and inverter are connected in interleaving using an intercell transformer (ICT) in order to reduce the volume of the output filter. Such an E-Type topology arrangement is expected to allow both the high efficiency and power density required for microgrid applications, as well as being capable of providing good performance in terms of quality of the voltage and current waveforms. The proposed hardware design and control interface are supported by the simulation results performed in Matlab/Simulink. The analysis has been then validated in terms of an experimental campaign performed on the converter prototype, which presented a power density of 8.4 kW/dm3 and a specific power of 3.24 kW/kg. The experimental results showed that the proposed converter can achieve a peak efficiency of 99% using only silicon power semiconductors. Full article
Show Figures

Figure 1

Back to TopTop