Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = multidrug co-assemble nanoparticle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6889 KiB  
Article
The Controlled Preparation of a Carrier-Free Nanoparticulate Formulation Composed of Curcumin and Piperine Using High-Gravity Technology
by Ning Han, Yue Liu, Xin Liu, Pengyue Li, Yang Lu, Shouying Du and Kai Wu
Pharmaceutics 2024, 16(6), 808; https://doi.org/10.3390/pharmaceutics16060808 - 14 Jun 2024
Cited by 3 | Viewed by 1622
Abstract
Carrier-free nanoparticulate formulations are an advantageous platform for the oral administration of insoluble drugs with the expectation of improving their bioavailability. However, the key limitation of exploiting carrier-free nanoparticulate formulations is the controlled preparation of drug nanoparticles on the basis of rational prescription [...] Read more.
Carrier-free nanoparticulate formulations are an advantageous platform for the oral administration of insoluble drugs with the expectation of improving their bioavailability. However, the key limitation of exploiting carrier-free nanoparticulate formulations is the controlled preparation of drug nanoparticles on the basis of rational prescription design. In the following study, we used curcumin (Cur) and piperine (Pip) as model water-insoluble drugs and developed a new method for the controlled preparation of carrier-free drug nanoparticles via multidrug co-assembly in a high-gravity environment. Encouraged by the controlled regulation of the nucleation and crystal growth rate of high-gravity technology accomplished by a rotating packed bed, co-amorphous Cur-Pip co-assembled multidrug nanoparticles with a uniform particle size of 130 nm were successfully prepared, exhibiting significantly enhanced dissolution performance and in vitro cytotoxicity. Moreover, the hydrogen bonding interactions between Cur and Pip in nanoparticles provide them with excellent re-dispersibility and storage stability. Moreover, the oral bioavailability of Cur was dramatically enhanced as a result of the smaller particle size of the co-assembled nanoparticles and the effective metabolic inhibitory effect of Pip. The present study provides a controlled approach to preparing a carrier-free nanoparticulate formulation through a multidrug co-assembly process in the high-gravity field to improve the oral bioavailability of insoluble drugs. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
Fabrication of Co-Assembly from Berberine and Tannic Acid for Multidrug-Resistant Bacteria Infection Treatment
by Tingting Zheng, Huan Chen, Chenyang Wu, Jinrui Wang, Mengyao Cui, Hanyi Ye, Yifan Feng, Ying Li and Zhengqi Dong
Pharmaceutics 2023, 15(7), 1782; https://doi.org/10.3390/pharmaceutics15071782 - 21 Jun 2023
Cited by 12 | Viewed by 3071 | Correction
Abstract
Long-term antibiotic use induces drug resistance in bacteria. This has given rise to the challenge of refractory infections, which have become a global health threat. Berberine (BBR) and tannic acid (TA) from plants exhibit promising antibacterial activities and may overcome antibiotic resistance. However, [...] Read more.
Long-term antibiotic use induces drug resistance in bacteria. This has given rise to the challenge of refractory infections, which have become a global health threat. Berberine (BBR) and tannic acid (TA) from plants exhibit promising antibacterial activities and may overcome antibiotic resistance. However, poor solubility and/or low penetration capability have limited their application. Carrier-free co-assembled nanocomposites composed entirely of BBR and TA exhibit improved or new properties and produce improved efficacy. Herein, we demonstrated that an ordered nanostructure could be spontaneously co-assembled by the solvent evaporation method using the two natural products. These co-assembled berberine–tannic acid nanoparticles (BBR-TA NPs) exhibited the best antibacterial effect compared with the corresponding physical mixture, pristine BBR, and some first-line antibiotics (benzylpenicillin potassium-BP and ciprofloxacin-Cip) against Staphylococcus aureus (S. aureus) and multidrug-resistant Staphylococcus aureus (MRSA). Even if the concentration of BBR-TA NPs was as low as 15.63 μg/mL, the antibacterial rate against S. aureus and MRSA was more than 80%. In addition to the synergistic effect of the two compounds, the antibacterial mechanism underlying the nanostructures was that they strongly adhered to the surface of the bacterial cell wall, thereby inducing cell membrane damage and intracellular ATP leakage. Furthermore, the in vivo wound healing effect of BBR-TA NPs was verified using an MRSA wound infection mouse model. The BBR-TA NPs achieved the best efficacy compared with BP and Cip. Moreover, cytotoxic and histopathological evaluations of mice revealed that the nanodrug had good biological safety. This facile and green co-assembly strategy for preparing nanoparticles provides a feasible reference for the clinical treatment of bacterial infection. Full article
Show Figures

Figure 1

24 pages, 6195 KiB  
Article
Development and Characterization of Innovative Multidrug Nanoformulation for Cardiac Therapy
by Amandine Gendron, Séverine Domenichini, Sandrine Zanna, Frédéric Gobeaux, Christophe Piesse, Didier Desmaële and Mariana Varna
Materials 2023, 16(5), 1812; https://doi.org/10.3390/ma16051812 - 22 Feb 2023
Cited by 1 | Viewed by 1971
Abstract
For several decades, various peptides have been under investigation to prevent ischemia/reperfusion (I/R) injury, including cyclosporin A (CsA) and Elamipretide. Therapeutic peptides are currently gaining momentum as they have many advantages over small molecules, such as better selectivity and lower toxicity. However, their [...] Read more.
For several decades, various peptides have been under investigation to prevent ischemia/reperfusion (I/R) injury, including cyclosporin A (CsA) and Elamipretide. Therapeutic peptides are currently gaining momentum as they have many advantages over small molecules, such as better selectivity and lower toxicity. However, their rapid degradation in the bloodstream is a major drawback that limits their clinical use, due to their low concentration at the site of action. To overcome these limitations, we have developed new bioconjugates of Elamipretide by covalent coupling with polyisoprenoid lipids, such as squalenic acid or solanesol, embedding self-assembling ability. The resulting bioconjugates were co-nanoprecipitated with CsA squalene bioconjugate to form Elamipretide decorated nanoparticles (NPs). The subsequent composite NPs were characterized with respect to mean diameter, zeta potential, and surface composition by Dynamic Light Scattering (DLS), Cryogenic Transmission Electron Microscopy (CryoTEM) and X-ray Photoelectron Spectrometry (XPS). Further, these multidrug NPs were found to have less than 20% cytotoxicity on two cardiac cell lines even at high concentrations, while maintaining an antioxidant capacity. These multidrug NPs could be considered for further investigations as an approach to target two important pathways involved in the development of cardiac I/R lesions. Full article
Show Figures

Graphical abstract

18 pages, 4376 KiB  
Article
Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery
by Fanghua Zhang, Chao Zhang, Shuangqing Fu, Huandi Liu, Mengnan Han, Xueyu Fan, Honglei Zhang and Wei Li
Nanomaterials 2022, 12(17), 3024; https://doi.org/10.3390/nano12173024 - 31 Aug 2022
Cited by 9 | Viewed by 2640
Abstract
Amphiphilic core–shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion [...] Read more.
Amphiphilic core–shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion proteins of PHA granule-associated protein (PhaP) and cationic peptide RALA through a strong hydrophobic effect. The hydrophobic drug curcumin (Cur) was encapsulated in PHBHHx nanoparticles. The chemotherapy drug 5-fluorouracil (5-FU) was administered in the form of its metabolite oligomeric 5-fluorodeoxyuridine (FUdR). Fifteen consecutive FUdR (FUdR15S) were adsorbed on the surface of PHBHHx nanoparticles by electrostatic interaction with RALA to form Cur@PHBX-PR/FUdR15S. Such amphiphilic cationic nanospheres had 88.3% EE of Cur and the drug loading of Cur and FUdR were 7.8% and 12.1%. The dual-drug-loaded nanospheres showed a time-differential release of Cur and FUdR. In addition, Cur@PHBX-PR/FUdR15S exhibited excellent anticancer activity and played a vital role in promoting the synergistic effect of FUdR and Cur in gastric cancer cells. The exploration of antitumor mechanisms demonstrated that Cur improved the activity of apoptosis-related proteins and cancer cells sensitized to FUdR. This amphiphilic core–shell system can serve as a general platform for sequential delivery of multiple drugs to treat several cancer cells. Full article
(This article belongs to the Special Issue Synthesis, Properties and Applications of Polymeric Nanomaterials)
Show Figures

Figure 1

14 pages, 3440 KiB  
Article
Synthesis of Amphiphilic Copolymers of N-Vinyl-2-pyrrolidone and Allyl Glycidyl Ether for Co-Delivery of Doxorubicin and Paclitaxel
by Anna Nechaeva, Alexander Artyukhov, Anna Luss, Mikhail Shtilman, Inessa Gritskova, Anton Shulgin, Mikhail Motyakin, Irina Levina, Efrem Krivoborodov, Ilya Toropygin, Evgeniy Chistyakov, Leonid Gurevich and Yaroslav Mezhuev
Polymers 2022, 14(9), 1727; https://doi.org/10.3390/polym14091727 - 23 Apr 2022
Cited by 12 | Viewed by 3560
Abstract
Co-delivery of chemotherapeutics in cancer treatment has been proven essential for overcoming multidrug resistance and improving the outcome of therapy. We report the synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and allyl glycidyl ether of various compositions and demonstrate that they can form [...] Read more.
Co-delivery of chemotherapeutics in cancer treatment has been proven essential for overcoming multidrug resistance and improving the outcome of therapy. We report the synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and allyl glycidyl ether of various compositions and demonstrate that they can form nanoaggregates capable of simultaneous covalent immobilization of doxorubicin by the epoxy groups in the shell and hydrophobic-driven incorporation of paclitaxel into the core of nanoparticles. The structure of the obtained copolymers was characterized by 13C NMR, IR, and MALDI spectroscopy, as well as adsorption at the water/toluene interface. A linear increase in the number-average molecular weight of amphiphilic copolymers and a decrease in the number-average diameter of macromolecular aggregates with an increase in the ratio N-vinyl-2-pyrrolidone/allyl glycidyl ether were observed. The assembled nanocarriers were characterized by DLS. The reported novel nanocarriers can be of interest for delivery and co-delivery of a wide range of pharmacological preparations and combined therapy for cancer and other deceases. Full article
Show Figures

Graphical abstract

20 pages, 4997 KiB  
Article
Polypeptide Self-Assembled Nanoparticles as Delivery Systems for Polymyxins B and E
by Dmitrii Iudin, Natalia Zashikhina, Elena Demyanova, Viktor Korzhikov-Vlakh, Elena Shcherbakova, Roman Boroznjak, Irina Tarasenko, Natalya Zakharova, Antonina Lavrentieva, Yury Skorik and Evgenia Korzhikova-Vlakh
Pharmaceutics 2020, 12(9), 868; https://doi.org/10.3390/pharmaceutics12090868 - 11 Sep 2020
Cited by 28 | Viewed by 4469
Abstract
Polymyxins are peptide antibiotics that are highly efficient against many multidrug resistant pathogens. However, the poor stability of polymyxins in the bloodstream requires the administration of high drug doses that, in turn, can lead to polymyxin toxicity. Consequently, different delivery systems have been [...] Read more.
Polymyxins are peptide antibiotics that are highly efficient against many multidrug resistant pathogens. However, the poor stability of polymyxins in the bloodstream requires the administration of high drug doses that, in turn, can lead to polymyxin toxicity. Consequently, different delivery systems have been considered for polymyxins to overcome these obstacles. In this work, we report the development of polymyxin delivery systems based on nanoparticles obtained from the self-assembly of amphiphilic random poly(l-glutamic acid-co-d-phenylalanine). These P(Glu-co-dPhe) nanoparticles were characterized in terms of their size, surface charge, stability, cytotoxicity, and uptake by macrophages. The encapsulation efficiency and drug loading into P(Glu-co-dPhe) nanoparticles were determined for both polymyxin B and E. The release kinetics of polymyxins B and E from nanoformulations was studied and compared in buffer solution and human blood plasma. The release mechanisms were analyzed using a number of mathematical models. The minimal inhibitory concentrations of the nanoformulations were established and compared with those determined for the free antibiotics. Full article
(This article belongs to the Special Issue Advances in Delivering Protein and Peptide Therapeutics)
Show Figures

Graphical abstract

18 pages, 19004 KiB  
Article
A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin
by Muyang Yang, Lixia Yu, Ruiwei Guo, Anjie Dong, Cunguo Lin and Jianhua Zhang
Nanomaterials 2018, 8(3), 167; https://doi.org/10.3390/nano8030167 - 15 Mar 2018
Cited by 30 | Viewed by 6013
Abstract
Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain [...] Read more.
Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain design simplicity, while incorporating the desirable multifunctionalities, such as coloaded high payloads, targeted delivery, hemodynamic stability, and also to ensure low drug leakage before reaching the tumor site, but simultaneously the corelease of drugs in the same cancer cell. Herein, we developed a facile modular coassembly approach to construct an all-in-one multifunctional multidrug delivery system for the synergistic codelivery of doxorubicin (DOX, chemotherapeutic agent) and curcumin (CUR, MDR modulator). The acid-cleavable PEGylated polymeric prodrug (DOX-h-PCEC), tumor cell-specific targeting peptide (CRGDK-PEG-PCL), and natural chemosensitizer (CUR) were ratiometrically assembled into in one single nanocarrier (CUR/DOX-h-PCEC@CRGDK NPs). The resulting CUR/DOX-h-PCEC@CRGDK NPs exhibited several desirable characteristics, such as efficient and ratiometric drug loading, high hemodynamic stability and low drug leakage, tumor intracellular acid-triggered cleavage, and subsequent intracellular simultaneous drug corelease, which are expected to maximize a synergistic effect of chemotherapy and chemosensitization. Collectively, the multifunctional nanocarrier is feasible for the creation of a robust nanoplatform for targeted multidrug codelivery and efficient MDR modulation. Full article
Show Figures

Figure 1

Back to TopTop