Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = multicrystalline silicon PERC solar cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4110 KiB  
Article
Mass Production Test of Solar Cells and Modules Made of 100% UMG Silicon. 20.76% Record Efficiency
by Eduardo Forniés, Bruno Ceccaroli, Laura Méndez, Alejandro Souto, Antonio Pérez Vázquez, Timur Vlasenko and Joaquín Dieguez
Energies 2019, 12(8), 1495; https://doi.org/10.3390/en12081495 - 19 Apr 2019
Cited by 25 | Viewed by 5274
Abstract
For more than 15 years FerroAtlantica (now Ferroglobe) has been developing a method of silicon purification to obtain Upgraded Metallurgical Grade Silicon (UMG-Si) for PV solar application without blending. After many improvements and optimizations, the final process has clearly demonstrated its validity in [...] Read more.
For more than 15 years FerroAtlantica (now Ferroglobe) has been developing a method of silicon purification to obtain Upgraded Metallurgical Grade Silicon (UMG-Si) for PV solar application without blending. After many improvements and optimizations, the final process has clearly demonstrated its validity in terms of quality and costs. In this paper the authors present new results stemming from a first mass-production campaign and a detailed description of the purification process that results in the tested UMG-Si. The subsequent steps in the value chain for the wafer, cell and module manufacturing are also described. Two independent companies, among the Tier-1 solar cells producers, were selected for the industrial test, each using a different solar cell technology: Al-BSF and black silicon + PERC. Cells and modules were manufactured in conventional production lines and their performances compared to those obtained with standard polysilicon wafers produced in the same lines and periods. Thus, for Al-BSF technology, the average efficiency of solar cells obtained with UMG-Si was (18.4 ± 0.4)% compared to 18.49% obtained with polysilicon-made wafers. In the case of black silicon + PERC, the average efficiency obtained with UMG-Si was (20.1 ± 0.6)%, compared to 20.41% for polysilicon multicrystalline wafers. Full article
Show Figures

Figure 1

9 pages, 1388 KiB  
Article
The Impact of Thermal Treatment on Light-Induced Degradation of Multicrystalline Silicon PERC Solar Cell
by Shude Zhang, Jiaqi Peng, Hongqiang Qian, Honglie Shen, Qingzhu Wei, Weifei Lian, Zhichun Ni, Jiansheng Jie, Xiaohong Zhang and Lingzhi Xie
Energies 2019, 12(3), 416; https://doi.org/10.3390/en12030416 - 29 Jan 2019
Cited by 15 | Viewed by 4662
Abstract
Multicrystalline silicon (mc-Si) PERC (passivated emitter and rear cell) solar cells suffer from severe light-induced degradation (LID), which mainly consists of two mechanisms, namely, BO-LID (boron–oxygen complex-related LID) and LeTID (light and elevated temperature induced degradation). The impact of thermal treatment on the [...] Read more.
Multicrystalline silicon (mc-Si) PERC (passivated emitter and rear cell) solar cells suffer from severe light-induced degradation (LID), which mainly consists of two mechanisms, namely, BO-LID (boron–oxygen complex-related LID) and LeTID (light and elevated temperature induced degradation). The impact of thermal treatment on the LID of a mc-Si PERC solar cell is investigated in this work. The LID of mc-Si PERC solar cells could be alleviated by lowering the peak temperature of thermal treatment (namely sintering), perhaps because fewer impurities present in mc-Si tended to dissolve into interstitial atoms, which have the tendency to form LeTID-related recombination active complexes. The LID could also be effectively restrained by partially replacing the boron dopant with gallium, which is ascribed to the decreased amount of boron–oxygen (B–O) complexes. This work provides a facile way to solve the severe LID problem in mc-Si PERC solar cells in mass production. Full article
Show Figures

Graphical abstract

18 pages, 2108 KiB  
Article
Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing
by Chiara Modanese, Hannu S. Laine, Toni P. Pasanen, Hele Savin and Joshua M. Pearce
Energies 2018, 11(9), 2337; https://doi.org/10.3390/en11092337 - 5 Sep 2018
Cited by 28 | Viewed by 9754
Abstract
Industrial Czochralski silicon (Cz-Si) photovoltaic (PV) efficiencies have routinely reached >20% with the passivated emitter rear cell (PERC) design. Nanostructuring silicon (black-Si) by dry-etching decreases surface reflectance, allows diamond saw wafering, enhances metal gettering, and may prevent power conversion efficiency degradation under light [...] Read more.
Industrial Czochralski silicon (Cz-Si) photovoltaic (PV) efficiencies have routinely reached >20% with the passivated emitter rear cell (PERC) design. Nanostructuring silicon (black-Si) by dry-etching decreases surface reflectance, allows diamond saw wafering, enhances metal gettering, and may prevent power conversion efficiency degradation under light exposure. Black-Si allows a potential for >20% PERC cells using cheaper multicrystalline silicon (mc-Si) materials, although dry-etching is widely considered too expensive for industrial application. This study analyzes this economic potential by comparing costs of standard texturized Cz-Si and black mc-Si PERC cells. Manufacturing sequences are divided into steps, and costs per unit power are individually calculated for all different steps. Baseline costs for each step are calculated and a sensitivity analysis run for a theoretical 1 GW/year manufacturing plant, combining data from literature and industry. The results show an increase in the overall cell processing costs between 15.8% and 25.1% due to the combination of black-Si etching and passivation by double-sided atomic layer deposition. Despite this increase, the cost per unit power of the overall PERC cell drops by 10.8%. This is a significant cost saving and thus energy policies are reviewed to overcome challenges to accelerating deployment of black mc-Si PERC across the PV industry. Full article
(This article belongs to the Special Issue Recent Research Progress for Energy Policy)
Show Figures

Graphical abstract

Back to TopTop