Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (234)

Search Parameters:
Keywords = multi-wavelet decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9471 KB  
Article
Algorithmic Complexity vs. Market Efficiency: Evaluating Wavelet–Transformer Architectures for Cryptocurrency Price Forecasting
by Aldan Jay and Rafael Berlanga
Algorithms 2026, 19(2), 101; https://doi.org/10.3390/a19020101 - 27 Jan 2026
Abstract
We investigate whether sophisticated deep learning architectures justify their computational cost for short-term cryptocurrency price forecasting. Our study evaluates a 2.1M-parameter (M represents millions (e.g., 2.1M = 2,100,000 parameters), with all RMSE values reported in USD) wavelet-enhanced transformer that decomposes the Fear and [...] Read more.
We investigate whether sophisticated deep learning architectures justify their computational cost for short-term cryptocurrency price forecasting. Our study evaluates a 2.1M-parameter (M represents millions (e.g., 2.1M = 2,100,000 parameters), with all RMSE values reported in USD) wavelet-enhanced transformer that decomposes the Fear and Greed Index (FGI) into multiple timescales before integrating these signals with technical indicators. Using Diebold–Mariano tests with HAC-corrected variance, we find that all models—including our wavelet–transformer, ARIMA, XGBoost, LSTM, and vanilla Transformer—fail to significantly outperform the O(1) naive persistence baseline at the 1-day horizon (DM statistic = +19.13, p<0.001, naive preferred). Our model achieves an RMSE of USD 2005 versus USD 1986 for naive (ratio 1.010), requiring 3909× more inference time (2.43 ms vs. 0.0006 ms) for a statistically worse performance. These results provide strong empirical support for the Efficient Market Hypothesis in cryptocurrency markets: even sophisticated multi-scale architectures combining wavelet decomposition, cross-attention, and auxiliary technical indicators cannot extract profitable short-term signals. Through systematic ablation, we identify positional encoding as the only critical architectural component—its removal causes 30% RMSE degradation. Our findings carry important implications, as follows: (1) short-term crypto forecasting faces fundamental predictability limits, (2) architectural complexity provides negative ROI in efficient markets, and (3) rigorous statistical validation reveals that apparent improvements often represent noise rather than signal. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (3rd Edition))
Show Figures

Figure 1

34 pages, 17028 KB  
Article
Vibration Signal Denoising Method Based on ICFO-SVMD and Improved Wavelet Thresholding
by Yanping Cui, Xiaoxu He, Zhe Wu, Qiang Zhang and Yachao Cao
Sensors 2026, 26(2), 750; https://doi.org/10.3390/s26020750 - 22 Jan 2026
Viewed by 67
Abstract
Non-stationary, multi-component vibration signals in rotating machinery are easily contaminated by strong background noise, which masks weak fault features and degrades diagnostic reliability. This paper proposes a joint denoising method that combines an improved cordyceps fungus optimization algorithm (ICFO), successive variational mode decomposition [...] Read more.
Non-stationary, multi-component vibration signals in rotating machinery are easily contaminated by strong background noise, which masks weak fault features and degrades diagnostic reliability. This paper proposes a joint denoising method that combines an improved cordyceps fungus optimization algorithm (ICFO), successive variational mode decomposition (SVMD), and an improved wavelet thresholding scheme. ICFO, enhanced by Chebyshev chaotic initialization, a longitudinal–transverse crossover fusion mutation operator, and a thinking innovation strategy, is used to adaptively optimize the SVMD penalty factor and number of modes. The optimized SVMD decomposes the noisy signal into intrinsic mode functions, which are classified into effective and noise-dominated components via the Pearson correlation coefficient. An improved wavelet threshold function, whose threshold is modulated by the sub-band signal-to-noise ratio, is then applied to the effective components, and the denoised signal is reconstructed. Simulation experiments on nonlinear, non-stationary signals with different noise levels (SNR = 1–20 dB) show that the proposed method consistently achieves the highest SNR and lowest RMSE compared to VMD, SVMD, VMD–WTD, CFO–SVMD, and WTD. Tests on CWRU bearing data and gearbox vibration signals with added −2 dB Gaussian white noise further confirm that the method yields the lowest residual variance ratio and highest signal energy ratio while preserving key fault characteristic frequencies. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

26 pages, 6505 KB  
Article
Hybrid Wavelet–Transformer–XGBoost Model Optimized by Chaotic Billiards for Global Irradiance Forecasting
by Walid Mchara, Giovanni Cicceri, Lazhar Manai, Monia Raissi and Hezam Albaqami
J. Sens. Actuator Netw. 2026, 15(1), 12; https://doi.org/10.3390/jsan15010012 - 22 Jan 2026
Viewed by 49
Abstract
Accurate global irradiance (GI) forecasting is essential for improving photovoltaic (PV) energy management, stabilizing renewable power systems, and enabling intelligent control in solar-powered applications, including electric vehicles and smart grids. The highly stochastic and non-stationary nature of solar radiation, influenced by rapid atmospheric [...] Read more.
Accurate global irradiance (GI) forecasting is essential for improving photovoltaic (PV) energy management, stabilizing renewable power systems, and enabling intelligent control in solar-powered applications, including electric vehicles and smart grids. The highly stochastic and non-stationary nature of solar radiation, influenced by rapid atmospheric fluctuations and seasonal variability, makes short-term GI prediction a challenging task. To overcome these limitations, this work introduces a new hybrid forecasting architecture referred to as WTX–CBO, which integrates a Wavelet Transform (WT)-based decomposition module, an encoder–decoder Transformer model, and an XGBoost regressor, optimized using the Chaotic Billiards Optimizer (CBO) combined with the Adam optimization algorithm. In the proposed architecture, WT decomposes solar irradiance data into multi-scale components, capturing both high-frequency transients and long-term seasonal patterns. The Transformer module effectively models complex temporal and spatio-temporal dependencies, while XGBoost enhances nonlinear learning capability and mitigates overfitting. The CBO ensures efficient hyperparameter tuning and accelerated convergence, outperforming traditional meta-heuristics such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). Comprehensive experiments conducted on real-world GI datasets from diverse climatic conditions demonstrate the outperformance of the proposed model. The WTX–CBO ensemble consistently outperformed benchmark models, including LSTM, SVR, standalone Transformer, and XGBoost, achieving improved accuracy, stability, and generalization capability. The proposed WTX–CBO framework is designed as a high-accuracy decision-support forecasting tool that provides short-term global irradiance predictions to enable intelligent energy management, predictive charging, and adaptive control strategies in solar-powered applications, including solar electric vehicles (SEVs), rather than performing end-to-end vehicle or photovoltaic power simulations. Overall, the proposed hybrid framework provides a robust and scalable solution for short-term global irradiance forecasting, supporting reliable PV integration, smart charging control, and sustainable energy management in next-generation solar systems. Full article
(This article belongs to the Special Issue AI and IoT Convergence for Sustainable Smart Manufacturing)
Show Figures

Figure 1

25 pages, 16529 KB  
Article
Multi-Scale Photovoltaic Power Forecasting with WDT–CRMABIL–Fusion: A Two-Stage Hybrid Deep Learning Framework
by Reza Khodabakhshi Palandi, Loredana Cristaldi and Luca Martiri
Energies 2026, 19(2), 455; https://doi.org/10.3390/en19020455 - 16 Jan 2026
Viewed by 200
Abstract
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel [...] Read more.
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel irradiance). We then forecast the approximation and detail sub-series using specialized component predictors: a 1D-CNN with dual residual multi-head attention (feature-wise and time-wise) together with a BiLSTM. In Stage 2, a compact dense fusion network recombines the component forecasts into the final PV power trajectory. We use 5-min data from a PV plant in Milan and evaluate 5-, 10-, and 15-min horizons. The proposed approach outperforms strong baselines (DCC+LSTM, CNN+LSTM, CNN+BiLSTM, CRMABIL direct, and WDT+CRMABIL direct). For the 5-min horizon, it achieves MAE = 1.60 W and RMSE = 4.21 W with R2 = 0.943 and CORR = 0.973, compared with the best benchmark (MAE = 3.87 W; RMSE = 7.89 W). The gains persist across K-means++ weather clusters (rainy/sunny/cloudy) and across seasons. By combining explicit multi-scale decomposition, attention-based sequence learning, and learned fusion, WDT–CRMABIL–Fusion provides accurate and robust ultra-short-term PV forecasts suitable for storage dispatch and reserve scheduling. Full article
Show Figures

Figure 1

25 pages, 8224 KB  
Article
QWR-Dec-Net: A Quaternion-Wavelet Retinex Framework for Low-Light Image Enhancement with Applications to Remote Sensing
by Vladimir Frants, Sos Agaian, Karen Panetta and Artyom Grigoryan
Information 2026, 17(1), 89; https://doi.org/10.3390/info17010089 - 14 Jan 2026
Viewed by 225
Abstract
Computer vision and deep learning are essential in diverse fields such as autonomous driving, medical imaging, face recognition, and object detection. However, enhancing low-light remote sensing images remains challenging for both research and real-world applications. Low illumination degrades image quality due to sensor [...] Read more.
Computer vision and deep learning are essential in diverse fields such as autonomous driving, medical imaging, face recognition, and object detection. However, enhancing low-light remote sensing images remains challenging for both research and real-world applications. Low illumination degrades image quality due to sensor limitations and environmental factors, weakening visual fidelity and reducing performance in vision tasks. Common issues such as insufficient lighting, backlighting, and limited exposure create low contrast, heavy shadows, and poor visibility, particularly at night. We propose QWR-Dec-Net, a quaternion-based Retinex decomposition network tailored for low-light image enhancement. QWR-Dec-Net consists of two key modules: a decomposition module that separates illumination and reflectance, and a denoising module that fuses a quaternion holistic color representation with wavelet multi-frequency information. This structure jointly improves color constancy and noise suppression. Experiments on low-light remote sensing datasets (LSCIDMR and UCMerced) show that QWR-Dec-Net outperforms current methods in PSNR, SSIM, LPIPS, and classification accuracy. The model’s accurate illumination estimation and stable reflectance make it well-suited for remote sensing tasks such as object detection, video surveillance, precision agriculture, and autonomous navigation. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

21 pages, 23946 KB  
Article
Infrared Image Denoising Algorithm Based on Wavelet Transform and Self-Attention Mechanism
by Hongmei Li, Yang Zhang, Luxia Yang and Hongrui Zhang
Sensors 2026, 26(2), 523; https://doi.org/10.3390/s26020523 - 13 Jan 2026
Viewed by 156
Abstract
Infrared images are often degraded by complex noise due to hardware and environmental factors, posing challenges for subsequent processing and target detection. To overcome the shortcomings of existing denoising methods in balancing noise removal and detail preservation, this paper proposes a Wavelet Transform [...] Read more.
Infrared images are often degraded by complex noise due to hardware and environmental factors, posing challenges for subsequent processing and target detection. To overcome the shortcomings of existing denoising methods in balancing noise removal and detail preservation, this paper proposes a Wavelet Transform Enhanced Infrared Denoising Model (WTEIDM). Firstly, a Wavelet Transform Self-Attention (WTSA) is designed, which combines the frequency-domain decomposition ability of the discrete wavelet transform (DWT) with the dynamic weighting mechanism of self-attention to achieve effective separation of noise and detail. Secondly, a Multi-Scale Gated Linear Unit (MSGLU) is devised to improve the ability to capture detail information and dynamically control features through dual-branch multi-scale depth-wise convolution and gating strategy. Finally, a Parallel Hybrid Attention Module (PHAM) is proposed to enhance cross-dimensional feature fusion effect through the parallel cross-interaction of spatial and channel attention. Extensive experiments are conducted on five infrared datasets under different noise levels (σ = 15, 25, and 50). The results demonstrate that the proposed WTEIDM outperforms several state-of-the-art denoising algorithms on both PSNR and SSIM metrics, confirming its superior generalization capability and robustness. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 3447 KB  
Article
Leveraging Machine Learning Flood Forecasting: A Multi-Dimensional Approach to Hydrological Predictive Modeling
by Ghazi Al-Rawas, Mohammad Reza Nikoo, Nasim Sadra and Malik Al-Wardy
Water 2026, 18(2), 192; https://doi.org/10.3390/w18020192 - 12 Jan 2026
Viewed by 225
Abstract
Flash flood events are some of the most life-threatening natural disasters, so it is important to predict extreme rainfall events effectively. This study introduces an LSTM model that utilizes a customized loss function to effectively predict extreme rainfall events. The proposed model incorporates [...] Read more.
Flash flood events are some of the most life-threatening natural disasters, so it is important to predict extreme rainfall events effectively. This study introduces an LSTM model that utilizes a customized loss function to effectively predict extreme rainfall events. The proposed model incorporates dynamic environmental variables, such as rainfall, LST, and NDVI, and incorporates additional static variables such as soil type and proximity to infrastructure. Wavelet transformation decomposes the time series into low- and high-frequency components to isolate long-term trends and short-term events. Model performance was compared against Random Forest (RF), Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), and an LSTM-RF ensemble. The custom loss LSTM achieved the best performance (MAE = 0.022 mm/day, RMSE = 0.110 mm/day, R2 = 0.807, SMAPE = 7.62%), with statistical validation via a Kruskal–Wallis ANOVA, confirming that the improvement is significant. Model uncertainty is quantified using a Bayesian MCMC framework, yielding posterior estimates and credible intervals that explicitly characterize predictive uncertainty under extreme rainfall conditions. The sensitivity analysis highlights rainfall and LST as the most influential predictors, while wavelet decomposition provides multi-scale insights into environmental dynamics. The study concludes that customized loss functions can be highly effective in extreme rainfall event prediction and thus useful in managing flash flood events. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 6045 KB  
Article
Estimation of Citrus Leaf Relative Water Content Using CWT Combined with Chlorophyll-Sensitive Bands
by Xiangqian Qi, Yanfang Li, Shiqing Dou, Wei Li, Yanqing Yang and Mingchao Wei
Sensors 2026, 26(2), 467; https://doi.org/10.3390/s26020467 - 10 Jan 2026
Viewed by 224
Abstract
In citrus cultivation practice, regular monitoring of leaf leaf relative water content (RWC) can effectively guide water management, thereby improving fruit quality and yield. When applying hyperspectral technology to citrus leaf moisture monitoring, the precise quantification of RWC still needs to address issues [...] Read more.
In citrus cultivation practice, regular monitoring of leaf leaf relative water content (RWC) can effectively guide water management, thereby improving fruit quality and yield. When applying hyperspectral technology to citrus leaf moisture monitoring, the precise quantification of RWC still needs to address issues such as data noise and algorithm adaptability. The noise interference and spectral aliasing in RWC sensitive bands lead to a decrease in the accuracy of moisture inversion in hyperspectral data, and the combined sensitive bands of chlorophyll (LCC) in citrus leaves can affect its estimation accuracy. In order to explore the optimal prediction model for RWC of citrus leaves and accurately control irrigation to improve citrus quality and yield, this study is based on 401–2400 nm spectral data and extracts noise robust features through continuous wavelet transform (CWT) multi-scale decomposition. A high-precision estimation model for citrus leaf RWC is established, and the potential of CWT in RWC quantitative inversion is systematically evaluated. This study is based on the multi-scale analysis characteristics of CWT to probe the time–frequency characteristic patterns associated with RWC and LCC in citrus leaf spectra. Pearson correlation analysis is used to evaluate the effectiveness of features at different decomposition scales, and the successive projections algorithm (SPA) is further used to eliminate band collinearity and extract the optimal sensitive band combination. Finally, based on the selected RWC and LCC-sensitive bands, a high-precision predictive model for citrus leaf RWC was established using partial least squares regression (PLSR). The results revealed that (1) CWT preprocessing markedly boosts the estimation accuracy of RWC and LCC relative to the original spectrum (max improvements: 6% and 3%), proving it enhances spectral sensitivity to these two indices in citrus leaves. (2) Combining CWT and SPA, the resulting predictive model showed higher inversion accuracy than the original spectra. (3) Integrating RWC Scale7 and LCC Scale5-2224/2308 features, the CWT-SPA fusion model showed optimal predictive performance (R2 = 0.756, RMSE = 0.0214), confirming the value of multi-scale feature joint modeling. Overall, CWT-SPA coupled with LCC spectral traits can boost the spectral response signal of citrus leaf RWC, enhancing its prediction capability and stability. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

26 pages, 3456 KB  
Article
Multi-Scale and Interpretable Daily Runoff Forecasting with IEWT and ModernTCN
by Qing Li, Yunwei Zhou, Yongshun Zheng, Chu Zhang and Tian Peng
Water 2026, 18(2), 183; https://doi.org/10.3390/w18020183 - 9 Jan 2026
Viewed by 218
Abstract
Daily runoff series exhibit high complexity and significant fluctuations, which often lead to large prediction errors and limit the scientific basis of water resource scheduling and management. This study proposes a runoff prediction framework that incorporates upstream–downstream hydrological correlation information and integrates Improved [...] Read more.
Daily runoff series exhibit high complexity and significant fluctuations, which often lead to large prediction errors and limit the scientific basis of water resource scheduling and management. This study proposes a runoff prediction framework that incorporates upstream–downstream hydrological correlation information and integrates Improved Empirical Wavelet Transform (IEWT), SHAP-based interpretable feature selection, Improved Population-Based Training (IPBT), and the Modern Temporal Convolutional Network (ModernTCN) to enhance forecasting accuracy and model robustness. First, IEWT is employed to perform multi-scale decomposition of the daily runoff sequence, extracting structural features at different temporal scales. Then, upstream–downstream hydrological correlation information is introduced, and the SHAP method is used to evaluate the importance of multi-source basin features, eliminating redundant variables to improve input quality and training efficiency. Finally, IPBT is applied to optimize ModernTCN hyperparameters, thereby constructing a high-performance forecasting model. Case studies at the Hankou station demonstrate that the proposed IPBT-IEWT-SHAP-ModernTCN model significantly outperforms benchmark methods such as LSTM, iTransformer, and TCN in terms of accuracy, stability, and generalization. Specifically, the model achieves a root mean square error of 342.14, a mean absolute error of 251.01, and a Nash–Sutcliffe efficiency of 0.9992. These results indicate that the proposed method can effectively capture the nonlinear correlation characteristics between upstream and downstream hydrological processes, thus providing an efficient and widely adaptable framework for daily runoff prediction and scientific water resources management. Full article
Show Figures

Figure 1

24 pages, 2050 KB  
Article
MAWC-Net: A Multi-Scale Attention Wavelet Convolutional Neural Network for Soil pH Prediction
by Xiaohui Cheng, Zifeng Liu, Yanping Kang, Xiaolan Xie, Yun Deng, Qiu Lu, Jian Tang, Yuanyuan Shi and Junyu Zhao
Appl. Sci. 2026, 16(1), 54; https://doi.org/10.3390/app16010054 - 20 Dec 2025
Viewed by 216
Abstract
Soil is a critical natural resource that requires continuous monitoring to support sustainable agriculture. Among soil properties, pH is an essential indicator because it strongly affects nutrient availability and biological activity. Visible–Near-Infrared (Vis–NIR) spectroscopy offers a rapid and cost-effective solution for soil pH [...] Read more.
Soil is a critical natural resource that requires continuous monitoring to support sustainable agriculture. Among soil properties, pH is an essential indicator because it strongly affects nutrient availability and biological activity. Visible–Near-Infrared (Vis–NIR) spectroscopy offers a rapid and cost-effective solution for soil pH prediction, but traditional machine learning models often struggle to effectively extract features from high-dimensional spectral data. To address this challenge, we propose a Multi-Scale Attention Wavelet Convolutional Neural Network (MAWC-Net), which integrates multi-scale convolutions, attention mechanisms, and a Haar Wavelet Decomposition Module (HWDM) to enhance spectral feature representation. Experiments on the LUCAS2009 topsoil dataset demonstrate that MAWC-Net achieves superior prediction accuracy compared with conventional machine learning and deep learning baselines. These findings highlight the potential of wavelet-enhanced deep neural networks to advance soil property modeling and support precision agriculture. Full article
Show Figures

Figure 1

31 pages, 11484 KB  
Article
Towards Heart Rate Estimation in Complex Multi-Target Scenarios: A High-Precision FMCW Radar Scheme Integrating HDBS and VLW
by Xuefei Dong, Yunxue Liu, Jinwei Wang, Shie Wu, Chengyou Wang and Shiqing Tang
Sensors 2025, 25(24), 7629; https://doi.org/10.3390/s25247629 - 16 Dec 2025
Viewed by 438
Abstract
Non-contact heart rate estimation technology based on frequency-modulated continuous wave (FMCW) radar has garnered extensive attention in single-target scenarios, yet it remains underexplored in multi-target environments. Accurate discrimination of multiple targets and precise estimation of their heart rates constitute key challenges in the [...] Read more.
Non-contact heart rate estimation technology based on frequency-modulated continuous wave (FMCW) radar has garnered extensive attention in single-target scenarios, yet it remains underexplored in multi-target environments. Accurate discrimination of multiple targets and precise estimation of their heart rates constitute key challenges in the multi-target domain. To address these issues, we propose a novel scheme for multi-target heart rate estimation. First, a high-precision distance-bin selection (HDBS) method is proposed for target localization in the range domain. Next, multiple-input multiple-output (MIMO) array processing is combined with the Root-multiple signal classification (Root-MUSIC) algorithm for angular domain estimation, enabling accurate discrimination of multiple targets. Subsequently, we propose an efficient method for interference suppression and vital sign extraction that cascades variational mode decomposition (VMD), local mean decomposition (LMD), and wavelet thresholding (WT) termed as VLW, which enables high-quality heartbeat signal extraction. Finally, to achieve high-precision and super-resolution heart rate estimation with low computational burden, an improved fast iterative interpolated beamforming (FIIB) algorithm is proposed. Specifically, by leveraging the conjugate symmetry of real-valued signals, the improved FIIB algorithm reduces the execution time by approximately 60% compared to the standard version. In addition, the proposed scheme provides sufficient signal-to-noise ratio (SNR) gain through low-complexity accumulation in both distance and angle estimation. Six experimental scenarios are designed, incorporating densely arranged targets and front-back occlusion, and extensive experiments are conducted. Results show this scheme effectively discriminates multiple targets in all tested scenarios with a mean absolute error (MAE) below 2.6 beats per minute (bpm), demonstrating its viability as a robust multi-target heart rate estimation scheme in various engineering fields. Full article
Show Figures

Figure 1

30 pages, 3829 KB  
Article
MFE-STN: A Versatile Front-End Module for SAR Deception Jamming False Target Recognition
by Liangru Li, Lijie Huang, Tingyu Meng, Cheng Xing, Tianyuan Yang, Wangzhe Li and Pingping Lu
Remote Sens. 2025, 17(23), 3848; https://doi.org/10.3390/rs17233848 - 27 Nov 2025
Viewed by 423
Abstract
Advanced deception countermeasures now enable adversaries to inject false targets into synthetic-aperture-radar (SAR) imagery, generating electromagnetic signatures virtually indistinguishable from genuine targets, thus destroying the separability essential for conventional recognition algorithms. To address this problem, we propose a versatile front-end Multi-Feature Extraction and [...] Read more.
Advanced deception countermeasures now enable adversaries to inject false targets into synthetic-aperture-radar (SAR) imagery, generating electromagnetic signatures virtually indistinguishable from genuine targets, thus destroying the separability essential for conventional recognition algorithms. To address this problem, we propose a versatile front-end Multi-Feature Extraction and Spatial Transformation Network (MFE-STN), specifically designed for the task of discriminating between true targets and deceptive false targets created by SAR jamming, which can be seamlessly integrated with existing CNN backbones without architecture modification. MFE-STN integrates three complementary operations: (i) wavelet decomposition to extract the overall geometric features and scattering distribution of the target, (ii) a manifold transformation module for non-linear alignment of heterogeneous feature spaces, and (iii) a lightweight deformable spatial transformer that compensates for local geometric distortions introduced by deceptive jamming. By analyzing seven typical parameter-mismatch effects, we construct a simulated dataset containing six representative classes—four known classes and two unseen classes. Experimental results demonstrate that inserting MFE-STN boosts the average F1-score of known targets by 12.19% and significantly improves identification accuracy for unseen targets. This confirms the module’s capability to capture discriminative signatures to distinguish genuine targets from deceptive ones while exhibiting strong cross-domain generalization capabilities. Full article
Show Figures

Figure 1

23 pages, 18754 KB  
Article
Wavelet-Based Analysis of Soundscape Dynamics in a Riparian Woodland: The Bernate-Ticino River Park
by Roberto Benocci, Giorgia Guagliumi, Andrea Potenza, Valentina Zaffaroni-Caorsi, Hector Eduardo Roman and Giovanni Zambon
Sensors 2025, 25(23), 7248; https://doi.org/10.3390/s25237248 - 27 Nov 2025
Viewed by 511
Abstract
Passive acoustic monitoring (PAM) is a valuable tool for ecological research, but many eco-acoustic indices show inconsistent correlations with biodiversity due to methodological variability and environmental noise. We propose a complementary, physically interpretable approach using energy-derived metrics. We analyzed audio recordings from three [...] Read more.
Passive acoustic monitoring (PAM) is a valuable tool for ecological research, but many eco-acoustic indices show inconsistent correlations with biodiversity due to methodological variability and environmental noise. We propose a complementary, physically interpretable approach using energy-derived metrics. We analyzed audio recordings from three sites near a major highway in the Ticino River Park (Milan, Italy) using 1 sec equivalent continuous sound pressure level (Leq1s), peak interval statistics, maximal-overlap discrete-wavelet transform (MODWT), and temporal fractal analysis. This multi-resolution type of approach enabled frequency-specific tracking of acoustic energy and temporal structure. Our results reveal site-specific differences: Site 3, the most distant from the highway, showed higher high-frequency energy and longer temporal persistence, suggesting richer biophonic activity. Site 1, the closest to the highway, displayed flatter spectral profiles and faster autocorrelation decay. Diel patterns were reflected in hourly Leq trends, while fractal analysis revealed frequency- and site-dependent acoustic memory. These automated findings were corroborated by expert annotations of bird activity and traffic. The integration of Leq1s, peak metrics, and wavelet decomposition offers a suitable framework for soundscape characterization, with strong potential for long-term ecoacoustic monitoring and habitat quality assessment in complex environments. Full article
Show Figures

Figure 1

33 pages, 9222 KB  
Article
Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding
by Linyu Yuan
Sensors 2025, 25(22), 7014; https://doi.org/10.3390/s25227014 - 17 Nov 2025
Viewed by 492
Abstract
Gas disasters in coal mines are the principal constraint on safe operations; accordingly, accurate gas time-series forecasting and real-time fluctuation monitoring are essential for prevention and early warning. A method termed Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding is proposed. The Multi-Variate Variational Mode [...] Read more.
Gas disasters in coal mines are the principal constraint on safe operations; accordingly, accurate gas time-series forecasting and real-time fluctuation monitoring are essential for prevention and early warning. A method termed Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding is proposed. The Multi-Variate Variational Mode Decomposition (MVMD) algorithm is refined by integrating wavelet denoising with an Entropy Weight Method (EWM) multi-index scheme (seven indicators, including SNR and PSNR; weight-solver error ≤ 0.001, defined as the maximum absolute change between successive weight vectors in the entropy-weight iteration). Through this optimisation, the decomposition parameters are selected as K = 4 (modes) and α = 1000, yielding effective noise reduction on 83,970 multi-channel records from longwall faces; after joint denoising, SSIM reaches 0.9849, representing an improvement of 0.5%–18.7% over standalone wavelet denoising. An interpretable Cross Interaction Refinement Graph Neural Network (CrossGNN) is then constructed. Shapley analysis is employed to quantify feature contributions; the m1t2 gas component attains a SHAP value of 0.025, which is 5.8× that of the wind-speed sensor. For multi-timestep prediction (T0–T2), the model achieves MAE = 0.008705754 and MSE = 0.000242083, which are 8.7% and 12.7% lower, respectively, than those of STGNN and MTGNN. For fluctuation detection, Pruned Exact Linear Time (PELT) with minimum segment length L_min = 58 is combined with a circular block bootstrap test to identify sudden-growth and high-fluctuation segments while controlling FDR = 0.10. Hasse diagrams are further used to elucidate dominance relations among components (e.g., m3t3, the third decomposed component of the T2 gas sensor). Field data analyses substantiate the effectiveness of the approach and provide technical guidance for the intellectualisation of coal-mine safety management. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

36 pages, 2484 KB  
Review
Signal Preprocessing, Decomposition and Feature Extraction Methods in EEG-Based BCIs
by Bandile Mdluli, Philani Khumalo and Rito Clifford Maswanganyi
Appl. Sci. 2025, 15(22), 12075; https://doi.org/10.3390/app152212075 - 13 Nov 2025
Viewed by 1169
Abstract
Brain–Computer Interface (BCI) technology facilitates direct communication between the human brain and external devices by interpreting brain wave patterns associated with specific motor imagery tasks, which are derived from EEG signals. Although BCIs allow applications such as robotic arm control and smart assistive [...] Read more.
Brain–Computer Interface (BCI) technology facilitates direct communication between the human brain and external devices by interpreting brain wave patterns associated with specific motor imagery tasks, which are derived from EEG signals. Although BCIs allow applications such as robotic arm control and smart assistive environments, they face major challenges, mainly due to the large variation in EEG characteristics between and within individuals. This variability is caused by low signal-to-noise ratio (SNR) due to both physiological and non-physiological artifacts, which severely affect the detection rate (IDR) in BCIs. Advanced multi-stage signal processing pipelines, including efficient filtering and decomposition techniques, have been developed to address these problems. Additionally, numerous feature engineering techniques have been developed to identify highly discriminative features, mainly to enhance IDRs in BCIs. In this review, several pre-processing techniques, including feature extraction algorithms, are critically evaluated using deep learning techniques. The review comparatively discusses methods such as wavelet-based thresholding and independent component analysis (ICA), including empirical mode decomposition (EMD) and its more sophisticated variants, such as Self-Adaptive Multivariate EMD (SA-MEMD) and Ensemble EMD (EEMD). These methods are examined based on machine learning models using SVM, LDA, and deep learning techniques such as CNNs and PCNNs, highlighting key limitations and findings, including different performance metrics. The paper concludes by outlining future directions. Full article
Show Figures

Figure 1

Back to TopTop