Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = multi-DOF ultrasonic motors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 16237 KiB  
Review
A Comprehensive Review of Piezoelectric Ultrasonic Motors: Classifications, Characterization, Fabrication, Applications, and Future Challenges
by Sidra Naz and Tian-Bing Xu
Micromachines 2024, 15(9), 1170; https://doi.org/10.3390/mi15091170 - 21 Sep 2024
Cited by 11 | Viewed by 5443
Abstract
Piezoelectric ultrasonic motors (USMs) are actuators that use ultrasonic frequency piezoelectric vibration-generated waves to transform electrical energy into rotary or translating motion. USMs receive more attention because they offer distinct qualities over traditional magnet-coil-based motors, such as miniaturization, great accuracy, speed, non-magnetic nature, [...] Read more.
Piezoelectric ultrasonic motors (USMs) are actuators that use ultrasonic frequency piezoelectric vibration-generated waves to transform electrical energy into rotary or translating motion. USMs receive more attention because they offer distinct qualities over traditional magnet-coil-based motors, such as miniaturization, great accuracy, speed, non-magnetic nature, silent operation, straightforward construction, broad temperature operations, and adaptability. This review study focuses on the principle of USMs and their classifications, characterization, fabrication methods, applications, and future challenges. Firstly, the classifications of USMs, especially, standing-wave, traveling-wave, hybrid-mode, and multi-degree-of-freedom USMs, are summarized, and their respective functioning principles are explained. Secondly, finite element modeling analysis for design and performance predictions, conventional and nano/micro-fabrication methods, and various characterization methods are presented. Thirdly, their advantages, such as high accuracy, small size, and silent operation, and their benefits over conventional motors for the different specific applications are examined. Fourthly, the advantages and disadvantages of USMs are highlighted. In addition, their substantial contributions to a variety of technical fields like surgical robots and industrial, aerospace, and biomedical applications are introduced. Finally, their future prospects and challenges, as well as research directions in USM development, are outlined, with an emphasis on downsizing, increasing efficiency, and new materials. Full article
Show Figures

Figure 1

17 pages, 7844 KiB  
Article
Development of a 3-DOF Cylindrical Ultrasonic Motor Based on Non-Standard Modes
by Jingwen Leng, Long Jin, Zhike Xu and Xingxing Zhu
Appl. Sci. 2023, 13(18), 10096; https://doi.org/10.3390/app131810096 - 7 Sep 2023
Cited by 3 | Viewed by 1536
Abstract
Cylindrical multi-degree-of-freedom (multi-DOF) ultrasonic motors have the potential to significantly reduce motor size compared to other ultrasonic motors. They find applications in various systems, including micro-robot joints and space probes. This paper proposes a 3-DOF cylindrical ultrasonic motor with hybrid vibration modes. Hybrid [...] Read more.
Cylindrical multi-degree-of-freedom (multi-DOF) ultrasonic motors have the potential to significantly reduce motor size compared to other ultrasonic motors. They find applications in various systems, including micro-robot joints and space probes. This paper proposes a 3-DOF cylindrical ultrasonic motor with hybrid vibration modes. Hybrid vibration modes encompass non-standard longitudinal and bending vibrations. The structure and operating principle of the motor are described first. COMSOL Multiphysics models the stator’s vibration modes, frequency response, and 3-DOF motion. A motor prototype is manufactured and characterized to demonstrate the output characteristics of the motor. The results indicate that the motor has a no-load speed of 37 rpm along the x- and y-axes and up to 77 rpm along the z-axis. The maximum output torque of the motor is 25 Nm. The motor is low in height and compact, providing a method for further reducing the stator length of motors of the same type. Full article
Show Figures

Figure 1

14 pages, 7676 KiB  
Article
3DOF Ultrasonic Motor with Two Piezoelectric Rings
by Vytautas Jūrėnas, Gražvydas Kazokaitis and Dalius Mažeika
Sensors 2020, 20(3), 834; https://doi.org/10.3390/s20030834 - 4 Feb 2020
Cited by 25 | Viewed by 4988
Abstract
A novel design of a multiple degrees of freedom (multi-DOF) piezoelectric ultrasonic motor (USM) is presented in the paper. The main idea of the motor design is to combine the magnetic sphere type rotor and two oppositely placed ring-shaped piezoelectric actuators into one [...] Read more.
A novel design of a multiple degrees of freedom (multi-DOF) piezoelectric ultrasonic motor (USM) is presented in the paper. The main idea of the motor design is to combine the magnetic sphere type rotor and two oppositely placed ring-shaped piezoelectric actuators into one mechanism. Such a structure increases impact force and allows rotation of the sphere with higher torque. The main purpose of USM development was to design a motor for attitude control systems used in small satellites. A permanent magnetic sphere with a magnetic dipole is used for orientation and positioning when the sphere is rotated to the desired position and the magnetic field synchronizes with the Earth’s magnetic dipole. Also, the proposed motor can be installed and used for robotic systems, laser beam manipulation, etc. The system has a minimal number of components, small weight, and high reliability. Numerical simulation and experimental studies were used to verify the operating principles of the USM. Numerical simulation of a piezoelectric actuator was used to perform modal frequency and harmonic response analysis. Experimental studies were performed to measure both mechanical and electrical characteristics of the piezoelectric motor. Full article
(This article belongs to the Special Issue Development of Piezoelectric Sensors and Actuators)
Show Figures

Figure 1

Back to TopTop