Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = moisture level of coffee beans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4890 KB  
Article
Agro-Morphological Traits, Proximate Composition, and Phenotypic Plasticity of Coffea arabica in Contrasting and Very Close Environments in Northern Peru
by Ligia García, Jaris Veneros, Carlos Bolaños-Carriel, Grobert A. Guadalupe, Heyton Garcia, Roberto Carlos Mori-Zabarburú and Segundo G. Chavez
Agronomy 2025, 15(11), 2465; https://doi.org/10.3390/agronomy15112465 - 23 Oct 2025
Cited by 2 | Viewed by 1130
Abstract
Coffee is one of Peru’s most important agricultural commodities, and its productivity is highly influenced by environmental variability. This study aimed to evaluate agro-morphological traits, proximate bean composition, and the phenotypic plasticity index (PPI) of Coffea arabica (Catimor variety) cultivated in three neighboring [...] Read more.
Coffee is one of Peru’s most important agricultural commodities, and its productivity is highly influenced by environmental variability. This study aimed to evaluate agro-morphological traits, proximate bean composition, and the phenotypic plasticity index (PPI) of Coffea arabica (Catimor variety) cultivated in three neighboring provinces of Piura: Ayabaca, Huancabamba, and Morropón. Unlike previous studies that broadly compare distant regions, this research focuses on geographically close yet climatically contrasting environments, providing new insight into how microclimatic and edaphic variability shape both morphological and chemical traits. A total of 300 plants were sampled, and 12 morphological descriptors were recorded alongside proximate composition analyses of moisture, crude protein, fiber, ash, fat, and carbohydrates. Multivariate approaches, including cluster analysis, multiple correspondence analysis, and Pearson correlations, were applied to determine groupings and trait associations. Results indicated that 12 morphological variables consistently reflected species-specific descriptors, forming two statistical groups, with Morropón showing the greatest homogeneity. Significant differences (p ≤ 0.05) were observed in the proximate composition of most variables, except for crude fiber and carbohydrates. Morropón beans showed the highest fat and moisture values, while Huancabamba had elevated protein and ash levels. Morphological traits exhibited higher plasticity (PPI = 0.70) compared with proximate traits (PPI = 0.21). These findings reveal that even within short spatial distances, coffee plants exhibit marked phenotypic differentiation driven by local environmental factors, offering a novel, fine-scale perspective on trait variability relevant to breeding and adaptation studies under changing climatic conditions. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

55 pages, 2972 KB  
Review
The Impact of Brewing Methods on the Quality of a Cup of Coffee
by Alessandro Genovese, Nicola Caporaso and Antonietta Baiano
Beverages 2025, 11(5), 125; https://doi.org/10.3390/beverages11050125 - 25 Aug 2025
Cited by 1 | Viewed by 12185
Abstract
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean [...] Read more.
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean defects, density) with a notable degree of subjectivity, as consumer sensory perception is ultimately decisive. The brewing technique is described as a critical determinant of the final chemical, physical, and sensory attributes. Key parameters such as aroma profile, pH, titratable acidity, total and filtered solids, lipid and fatty acid content, viscosity, foam (crema), and colorimetric indices are detailed as essential metrics in coffee quality evaluation. Roasting creates most of coffee’s key aroma compounds. The brewing method further shapes the extraction of both volatile and other bioactive compounds like caffeine, chlorogenic acids, and lipids. Brewing methods significantly affect acidity, “body,” and crema stability, while water quality, temperature, and pressure are shown to impact extraction results and sensory properties. Attention is paid to how methods such as Espresso, filter, French press, and cold brew yield distinct physicochemical and sensory profiles in the cup. Overall, the review highlights the multifaceted nature of coffee cup quality and the interplay between raw material, processing, and preparation, ultimately shaping the coffee sensory experience and market value. Full article
Show Figures

Graphical abstract

13 pages, 5570 KB  
Article
Coffee Bean Characterization Using Terahertz Sensing
by Dook van Mechelen, Daan Meulendijks and Milan Koumans
Sensors 2025, 25(7), 2096; https://doi.org/10.3390/s25072096 - 27 Mar 2025
Viewed by 953
Abstract
Coffee bean sorting is currently based primarily on visual appearance and near-infrared techniques that probe the bean’s skin. However, sorting based on compositional differences has significant potential to optimize the roasting process. We present a novel coffee bean sorting method using terahertz (THz) [...] Read more.
Coffee bean sorting is currently based primarily on visual appearance and near-infrared techniques that probe the bean’s skin. However, sorting based on compositional differences has significant potential to optimize the roasting process. We present a novel coffee bean sorting method using terahertz (THz) spectroscopy, which effectively penetrates both green and roasted beans. Our findings show that the optical properties of coffee beans at THz frequencies are primarily governed by internal moisture levels. To demonstrate industrial feasibility, we implement a robot-guided THz sensing system capable of scanning beds of beans for automated sorting. More broadly, our results confirm the potential of THz technology for moisture content analysis across various applications. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

16 pages, 1618 KB  
Article
Rock Powder Enhances Soil Nutrition and Coffee Quality in Agroforestry Systems
by Fernanda de Paula Medeiros, André M. X. de Carvalho, Claudete Gindri Ramos, Guilherme Luiz Dotto, Irene Maria Cardoso and Suzi Huff Theodoro
Sustainability 2024, 16(1), 354; https://doi.org/10.3390/su16010354 - 30 Dec 2023
Cited by 6 | Viewed by 3237
Abstract
The use of rock powders is an agricultural practice that facilitates the agroecological transition and autonomy of many farmers. These inputs should be used in conjunction with management systems that enhance the weathering of the minerals contained in the rocks. This study aimed [...] Read more.
The use of rock powders is an agricultural practice that facilitates the agroecological transition and autonomy of many farmers. These inputs should be used in conjunction with management systems that enhance the weathering of the minerals contained in the rocks. This study aimed to assess the impact of incorporating gneiss powder on soil quality and coffee cultivation within agroecological and organic frameworks, encompassing agroforestry systems (AFSs) as well as areas fully exposed to sunlight (FS). Comprehensive analyses, including chemical, microbiological, and physical assessments, were carried out on the soil. The study involved evaluating various parameters such as electrical conductivity, grain density, total titratable acidity, and pH of the exudates to gauge the coffee quality. Following a 24-month application of rock powder, noteworthy observations included increased soil moisture in agroforestry systems (AFSs), presumably attributable to enhanced nutrient availability (potassium, calcium, magnesium, copper, and zinc) derived from the gneiss powder. In addition, a higher level of CO2 was derived from microbial respiration than from soil production. Similarly, coffee beans presented lower electrical conductivity, higher density, and fewer defects in AFSs than fully exposed sun systems (FS). The total titratable acidity values remain consistent with the limits indicated in the literature for quality coffees; the pH values, however, were lower. The results suggest that the use of gneiss powder enhances soil microorganism activity and accelerates the biological weathering of minerals for coffee plantations in AFSs. Full article
Show Figures

Figure 1

Back to TopTop