Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = modified straw fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5446 KiB  
Article
Effect of Acrylate Emulsion on the Mechanical and Microscopic Properties of Straw Fiber-Reinforced Cement-Magnesium Slag Stabilized Soil
by Chunqiu Xia, Xuanhao Cao, Jiuran Wen, Jun Li, Li Dai and Bowen Guan
Polymers 2024, 16(24), 3462; https://doi.org/10.3390/polym16243462 - 11 Dec 2024
Cited by 2 | Viewed by 960
Abstract
In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M [...] Read more.
In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M stabilized soil. The results show that the addition of AE significantly improves the compressive strength of the stabilized soil. When the AE content is 0.4%, the cement content is 3%, and the magnesium slag content is 3% (AE4-C3M3), the strength of the formula reaches 4.21 MPa, which meets the requirements of heavy traffic load conditions in the construction of high-speed or main road base layers. Some reactive groups on the polymer side chains (-COOH) engage in bridging with Ca2+ and RCOO to form a chemically bonded interpenetrating network structure, thereby enabling the acrylate emulsion to enhance the water damage resistance of the specimens. The notable improvement in strength is attributed to the film-forming and solidifying actions of AE, the binding and filling effects of C-S-H gel, and the reinforcing effect of straw fibers. FT-IR and TG-DSC analysis reveals the presence of polar electrostatic interactions between AE and the soil matrix. AE enhances the bonding among soil particles and facilitates the attachment of C-S-H gel onto the surfaces of the straw fibers, thereby increasing the strength and toughness of the material. The application of MS in conjunction with straw fibers within polymer-modified stabilized soil serves to promote the recycling of waste materials, thereby providing an environmentally friendly solution for the engineering application of solid waste. Full article
Show Figures

Figure 1

17 pages, 4110 KiB  
Article
Optimization Design of Cotton-Straw-Fiber-Modified Asphalt Mixture Performance Based on Response Surface Methodology
by Guihua Hu, Xiaowei Chen, Zhonglu Cao and Lvzhen Yang
Buildings 2024, 14(11), 3670; https://doi.org/10.3390/buildings14113670 - 18 Nov 2024
Cited by 2 | Viewed by 918
Abstract
This research explored the application of cotton straw fiber in asphalt mixtures, aiming to optimize the asphalt mixtures’ performance. Firstly, 17 experiments were designed using Response Surface Methodology (RSM). Subsequently, the Box–Behnken Design (BBD) was used to examine how the asphalt content, fiber [...] Read more.
This research explored the application of cotton straw fiber in asphalt mixtures, aiming to optimize the asphalt mixtures’ performance. Firstly, 17 experiments were designed using Response Surface Methodology (RSM). Subsequently, the Box–Behnken Design (BBD) was used to examine how the asphalt content, fiber length, and cotton straw fiber content interacted to affect the modified asphalt mixes’ pavement performance. Based on the experimental findings, performance prediction models were created to direct optimization. The optimized design was then validated through pavement performance tests and bending fatigue tests. The findings revealed that cotton straw fiber content, length, and asphalt content significantly influence the performance of modified asphalt mixtures. The inclusion of cotton straw fibers enhanced various properties of the mixtures. When the fiber content was set at 0.3%, fiber length at 6 mm, and asphalt content at 5.3%, the response indicators, including Marshall stability, dynamic stability, flexural strength, and freeze–thaw strength ratio, were measured at 12.246 kN, 2452.396 times/mm, 12.30 MPa, and 92.76%, respectively. These results indicate that the cotton-straw-fiber-modified asphalt mixture achieved optimal performance while meeting regulatory requirements. Additionally, fatigue tests showed that the cotton-straw-fiber-modified asphalt mixture exhibited superior fatigue resistance compared with the SBS-modified asphalt mixture. The maximum error between the RSM predictions and the experimental measurements was within 10%, demonstrating the accuracy of the predictive models in estimating the impact of different factors on asphalt mixture performance. The application of RSM in designing and optimizing cotton-straw-fiber-modified asphalt mixtures proved to be highly effective, offering valuable insights for utilizing cotton straw fibers in road construction. Full article
Show Figures

Figure 1

19 pages, 4892 KiB  
Article
Mechanistic Study on the Optimization of Asphalt-Based Material Properties by Physicochemical Interaction and Synergistic Modification of Molecular Structure
by Jiashuo Cao and Lifeng Wang
Polymers 2024, 16(20), 2924; https://doi.org/10.3390/polym16202924 - 18 Oct 2024
Viewed by 929
Abstract
In order to investigate the relationship between the molecular structure of fibers and the differences in physicochemical interactions between fibers and asphalt on the performance of fiber-modified asphalt, this paper chose two types of fibers with different chemical structures: straw fiber and polyester [...] Read more.
In order to investigate the relationship between the molecular structure of fibers and the differences in physicochemical interactions between fibers and asphalt on the performance of fiber-modified asphalt, this paper chose two types of fibers with different chemical structures: straw fiber and polyester fiber. First, the differences in molecular interactions between the two fibers and asphalt were explored using molecular dynamics, then the differences in the adsorption capacity of the two fibers on asphalt components were tested by attenuated total reflection infrared spectroscopy experiments, and finally, the differences in the rheological properties of the two fiber-modified asphalts were tested by dynamic shear rheology and low-temperature creep experiments. The molecular dynamics simulation findings reveal that polyester fibers may intersperse into asphalt molecules and interact with them via structures such as aromatic rings, whereas straw fibers are merely adsorbed on the asphalt’s surface. Straw fibers and asphalt exhibit hydrogen bonding, whereas polyester fibers and asphalt display van der Waals interactions. The results of attenuated total reflectance infrared spectroscopy indicated that polyester fiber absorbed asphalt components better than straw fiber. The rheological tests revealed that the polyester fiber had the highest complex shear modulus in the temperature range of 46–82 °C, and at 64 °C, the phase angle was 4.289° lower than that of the straw fiber-treated bitumen. Polyester fiber-modified asphalt had a 32.48%, 15.72%, and 6.09% lower creep modulus than straw fiber-modified asphalt at three low-temperature conditions: −6 °C, −12 °C, and −18 °C. It is clear that fibers with aromatic rings as a chemical structure outperform lignin-based fibers in terms of improving asphalt characteristics. The research findings can serve as a theoretical foundation for the selection of fibers to produce fiber-modified asphalt. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

19 pages, 3612 KiB  
Article
Study on the Performance Improvement of Straw Fiber Modified Asphalt by Vegetable Oil
by Hongfu Ma, Xiaolei Jiao, Xinjie Liu, Song Zhao, Minghui Gong, Qianhui Zhang and Jian Ouyang
Buildings 2024, 14(9), 2864; https://doi.org/10.3390/buildings14092864 - 11 Sep 2024
Viewed by 1144
Abstract
As a plasticizer, vegetable oil can improve the compatibility between straw fibers and an asphalt matrix and promote the uniform dispersion of fibers, thereby improving the viscoelastic properties of the composite material. This paper selected three vegetable oils: tall oil, rapeseed oil, and [...] Read more.
As a plasticizer, vegetable oil can improve the compatibility between straw fibers and an asphalt matrix and promote the uniform dispersion of fibers, thereby improving the viscoelastic properties of the composite material. This paper selected three vegetable oils: tall oil, rapeseed oil, and palm wax. Through dynamic shear rheology tests, low-temperature bending beam rheology tests, contact angle tests, and infrared spectroscopy tests, the vegetable-oil-reinforced straw fiber modification was analyzed from different points of view. The research results show that palm wax significantly improves the high-temperature rheological properties of straw-fiber-modified asphalt but has a negative impact on low-temperature properties. Tall oil can most significantly improve the low-temperature rheological properties of straw-fiber-modified asphalt. Rapeseed oil has the most obvious effect in improving the adhesion and water damage resistance of straw-fiber-modified asphalt. In addition, the research shows that all three vegetable oils exist in the modified asphalt in adsorbed form, and no new compounds are generated. These research results provide theoretical guidance value for the application of straw-fiber-modified asphalt pavement in different environments. Full article
Show Figures

Figure 1

18 pages, 12892 KiB  
Article
Influence of Modified Stalk Fibers on the Fatigue Performance of Asphalt Binder
by Kun Wang, Xiongao Li, Peng Hu, Yuzhu Zhu, Hao Xu and Lu Qu
Coatings 2023, 13(11), 1912; https://doi.org/10.3390/coatings13111912 - 8 Nov 2023
Cited by 3 | Viewed by 1268
Abstract
The type and content of modified stalk fibers significantly influence the fatigue properties of asphalt binder. In this study, different concentrations of NaOH solution were used to modify stalk fibers, and scanning electron microscopy (SEM) was used to observe the effect of the [...] Read more.
The type and content of modified stalk fibers significantly influence the fatigue properties of asphalt binder. In this study, different concentrations of NaOH solution were used to modify stalk fibers, and scanning electron microscopy (SEM) was used to observe the effect of the modified concentration on the fiber morphology. A dynamic shear rheology (DSR) test and a linear amplitude sweep (LAS) test were conducted to analyze the effects of the fiber type and content on various factors such as the complex shear modulus G*, phase angle δ, and fatigue parameters (A35 and B). Consequently, the fatigue life Nf of the fiber asphalt binder was calculated using a viscoelastic continuum damage model. The results show that stalk fibers modified using a 5% alkali solution exhibited the best oil absorption and heat resistance, the asphalt binder with a 1.5%–2% fiber content exhibited the best resistance to fatigue, and the fatigue performance of the asphalt binder with different types of fibers was superior when fiber doping was at 1.5%. Additionally, the fatigue parameter A35 of the modified cotton and corn stover fibers increased by 40.5% and 57.6%, respectively, and the fatigue parameter B decreased by 5.8% and 4.8%, respectively, compared with that of the unmodified stover fibers. Finally, the modified corn stalk fiber asphalt binder with a 1.5% fiber content demonstrated the best fatigue resistance. Full article
Show Figures

Figure 1

22 pages, 9228 KiB  
Article
Research on a New Plant Fiber Concrete-Light Steel Keel Wall Panel
by Yuqi Wu, Yunqiang Wu and Yue Wu
Sustainability 2023, 15(10), 8109; https://doi.org/10.3390/su15108109 - 16 May 2023
Cited by 4 | Viewed by 2238
Abstract
With the growing worldwide attention towards environmental protection, the rational utilization of rice straw (RS) has gradually attracted the attention of scholars. This paper innovatively puts forward a solution for rational utilization of RS. A rice straw fiber concrete (RSFC) with good physical [...] Read more.
With the growing worldwide attention towards environmental protection, the rational utilization of rice straw (RS) has gradually attracted the attention of scholars. This paper innovatively puts forward a solution for rational utilization of RS. A rice straw fiber concrete (RSFC) with good physical and mechanical properties and a rice straw concrete-light steel keel wall panel (RS-LSWP) with low comprehensive heat transfer coefficient and inconspicuous cold bridge phenomenon was designed. Firstly, the preparation method and process of RSFC is described in detail. Then, the physical and mechanical properties of RSFC, such as strength, apparent density, and thermal conductivity were tested. Finally, the thermal properties of the four new types of cold-formed thin-wall steel panels were analyzed using finite element simulation. The results show that the RSFC with a straw length of 5 mm, mass content of 12%, and modifier content of 1% is the most suitable for RS-LSWP. The standard compressive strength, tensile strength, and thermal conductivity of the RSFC are 2.2 MPa, 0.64 MPa, and 0.0862 W/(m·K), respectively. The wall panels with antitype C keel have a low comprehensive heat transfer coefficient and the best insulation effect. This study innovatively provides a technical method for the rational utilization of RS, promotes the application of RS and other agricultural wastes in building materials and the development of light steel housing. Full article
(This article belongs to the Special Issue Sustainable Structures and Construction in Civil Engineering)
Show Figures

Figure 1

34 pages, 782 KiB  
Review
Agricultural Byproducts Used as Low-Cost Adsorbents for Removal of Potentially Toxic Elements from Wastewater: A Comprehensive Review
by Elena L. Ungureanu, Andreea L. Mocanu, Corina A. Stroe, Corina M. Panciu, Laurentiu Berca, Robert M. Sionel and Gabriel Mustatea
Sustainability 2023, 15(7), 5999; https://doi.org/10.3390/su15075999 - 30 Mar 2023
Cited by 33 | Viewed by 5857
Abstract
Potentially toxic elements (PTEs) are ubiquitous chemical compounds in the environment due to contamination of air, water, or soil. They are primarily sourced from fossil fuel combustion, mining and smelting, electroplating, dyes and pigments, agricultural treatments, and plastic and metallic industries. These chemical [...] Read more.
Potentially toxic elements (PTEs) are ubiquitous chemical compounds in the environment due to contamination of air, water, or soil. They are primarily sourced from fossil fuel combustion, mining and smelting, electroplating, dyes and pigments, agricultural treatments, and plastic and metallic industries. These chemical contaminants can produce various adverse effects when they enter the human body and can also affect crops and aquatic ecosystems. To address these issues, researchers are developing various techniques, including ion exchange, membrane filtration, photocatalysis, electrochemical methods, bioadsorption, and combinations of these processes, to reduce the levels of these contaminants, especially from wastewater. Among these methods, bioadsorption has gained much attention due to its high efficiency, low cost, and abundance of adsorbent materials. Agricultural byproducts used as biosorbents include rice husk and bran, citrus peel, banana peel, coconut husk, sugarcane bagasse, soybean hulls, walnut and almond shells, coconut fiber, barley straws, and many others. Biosorption capacity can be described using adsorption kinetic models such as Elovich, Ritchie’s, and pseudo-second-order models, as well as different adsorption isotherm models such as Freundlich, Langmuir, Temkin isotherm, and BET models. Both conventional processes and adsorption models are influenced by parameters such as pH, agitation speed, contact time, particle size, concentration of the adsorbent material, initial concentration of the contaminant, and the type of modifying agent used. This review paper aims to examine the low-cost adsorbents and their removal efficiency and bioadsorption capacity for different PTEs present in wastewater, and their potential as decontamination methods. Full article
(This article belongs to the Special Issue Food Choice and Environmental Concerns)
Show Figures

Figure 1

20 pages, 3070 KiB  
Article
Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Cultures from Pachnoda marginata Larva Gut
by Bruna Grosch Schroeder, Havva Betül İstanbullu, Matthias Schmidt, Washington Logroño, Hauke Harms and Marcell Nikolausz
Fermentation 2023, 9(1), 60; https://doi.org/10.3390/fermentation9010060 - 11 Jan 2023
Cited by 5 | Viewed by 2863
Abstract
In order to partially mimic the efficient lignocellulose pretreatment process performed naturally in the gut system of Pachnoda marginata larvae, two wheat straw pretreatments were evaluated: a mechanical pretreatment via cutting the straw into two different sizes and an alkaline pretreatment with calcium [...] Read more.
In order to partially mimic the efficient lignocellulose pretreatment process performed naturally in the gut system of Pachnoda marginata larvae, two wheat straw pretreatments were evaluated: a mechanical pretreatment via cutting the straw into two different sizes and an alkaline pretreatment with calcium hydroxide. After pretreatment, gut enrichment cultures on wheat straw at alkaline pH were inoculated and kept at mesophilic conditions over 45 days. The methanogenic community was composed mainly of the Methanomicrobiaceae and Methanosarcinaceae families. The combined pretreatment, size reduction and alkaline pretreatment, was the best condition for methane production. The positive effect of the straw pretreatment was higher in the midgut cultures, increasing the methane production by 192%, while for hindgut cultures the methane production increased only by 149% when compared to non-pretreated straw. Scanning electron microscopy (SEM) showed that the alkaline pretreatment modified the surface of the wheat straw fibers, which promoted biofilm formation and microbial growth. The enrichment cultures derived from larva gut microbiome were able to degrade larger 1 mm alkaline treated and smaller 250 µm but non-pretreated straw at the same efficiency. The combination of mechanical and alkaline pretreatments resulted in increased, yet not superimposed, methane yield. Full article
Show Figures

Figure 1

27 pages, 3742 KiB  
Article
Fractionation of Lignocellulosic Fibrous Straw Digestate by Combined Hydrothermal and Enzymatic Treatment
by Timo Steinbrecher, Fabian Bonk, Marvin Scherzinger, Oliver Lüdtke and Martin Kaltschmitt
Energies 2022, 15(17), 6111; https://doi.org/10.3390/en15176111 - 23 Aug 2022
Cited by 5 | Viewed by 2111
Abstract
In industrial-scale biogas production from cereal straw, large quantities of solid fiber-rich digestate are produced as residual material. These residues usually contain high amounts of cellulose, hemicellulose and lignin and thus have potential for further utilization. However, they also contain impurities such as [...] Read more.
In industrial-scale biogas production from cereal straw, large quantities of solid fiber-rich digestate are produced as residual material. These residues usually contain high amounts of cellulose, hemicellulose and lignin and thus have potential for further utilization. However, they also contain impurities such as ammonia and minerals, which could negatively affect further utilization. Against this background, the present study investigates how this fibrous straw digestate can be fractionated by a combined hydrothermal and enzymatic treatment and what influence the impurities have in this process. Therefore, it is analyzed how the fractions cellulose, hemicellulose and lignin are modified by this two-stage treatment, using either raw digestate (including all impurities) or washed digestate (containing only purified fibers) as the substrate. For both substrates, around 50% of the hemicellulose is solubilized to xylans after 50 min of hydrothermal treatment using steam at 180 C. Furthermore, by subsequent enzymatic treatment, around 90% and 92% of the cellulose and hemicellulose still contained in the solids are hydrolyzed to glucose and xylose, respectively. Lignin accumulates in the remaining solid but structurally degrades during the hydrothermal treatment, which is indicated by decreasing ether and ester bond contents with increasing treatment times. Impurities contained within the raw digestate do not hinder this fractionation; they even seem to positively affect hemicellulose and cellulose valorization, but apparently lead to a slightly higher lignin degradation. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Graphical abstract

14 pages, 6010 KiB  
Article
Isolation and Characterization of Cellulose Nanofibers from Wheat Straw and Their Application for the Supercapacitor
by Qing Wang, Junying Han, Xin Wang, Yawei Zhao, Li Zhang, Na Liu, Jihong Huang, Dandan Zhai and Ming Hui
Crystals 2022, 12(8), 1177; https://doi.org/10.3390/cryst12081177 - 21 Aug 2022
Cited by 1 | Viewed by 2724
Abstract
As a by-product of wheat planting, wheat straw is an abundant agricultural residue with the highest cellulose content of all agricultural fibers. Its resourceful utilization contributes to alleviating the environmental problems it caused. In this study, cellulose from wheat straw (WS) is used [...] Read more.
As a by-product of wheat planting, wheat straw is an abundant agricultural residue with the highest cellulose content of all agricultural fibers. Its resourceful utilization contributes to alleviating the environmental problems it caused. In this study, cellulose from wheat straw (WS) is used as a dispersing agent to prepare a novel multi-walled carbon nanotube-modified nickel foam (NF) electrode. The new electrode is investigated for electrochemical properties relevant to supercapacitors. The 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation is chosen to produce cellulose nanofibers (CNF) from wheat straw. The prepared CNF is used to facilitate the uniform dispersion of multi-walled carbon nanotubes (MWCNT) and favor the formation of a stable CNF-CNTs membrane on the nickel foam skeleton. The influence of dispersing materials and content of CNF on the electrochemical performance of electrodes is investigated. It is revealed that the incorporation of CNF can improve the electrochemical stability of electrodes. Moreover, it also exhibits optimum capabilities (70.2% capacitance retention from 1 to 40 mA cm−2) when CNF:MWCNT = 1:0.7. The areal capacity of the CNF-MWCNT/NF electrode for a scanning rate of 5 mV s−1 is twice that of the MWCNT/NF electrode and 30 times that of the NF electrode, indicating it is a promising candidate to ensure the synchronization of a green environment and energy development. Full article
Show Figures

Figure 1

14 pages, 3642 KiB  
Article
Fabrication and Characterization of Degradable Crop-Straw-Fiber Composite Film Using In Situ Polymerization with Melamine–Urea–Formaldehyde Prepolymer for Agricultural Film Mulching
by Qian Lang, Chuanhao Liu, Xiaoxin Zhu, Chao Zhang, Shengming Zhang, Longhai Li, Shuang Liu and Haitao Chen
Materials 2022, 15(15), 5170; https://doi.org/10.3390/ma15155170 - 26 Jul 2022
Cited by 7 | Viewed by 2391
Abstract
Soil mulch composite films composed of biodegradable materials are being increasingly used in agriculture. In this study, mulch films based on wheat straw fiber and an environmentally friendly modifier were prepared via in situ polymerization and tested as the ridge mulch for crops. [...] Read more.
Soil mulch composite films composed of biodegradable materials are being increasingly used in agriculture. In this study, mulch films based on wheat straw fiber and an environmentally friendly modifier were prepared via in situ polymerization and tested as the ridge mulch for crops. The mechanical properties of the straw fiber film were significantly enhanced by the modification. In particular, the films exhibited a noticeable increase in dry and wet tensile strength from 2.35 to 4.15 and 0.41 to 1.51 kN/m, respectively, with increasing filler content from 0% to 25%. The contact angle of the straw also showed an improvement based on its hydrophilicity. The crystallinity of the modified film was higher than that of the unmodified film and increased with modifier content. The changes in chemical interaction of the straw fiber film were determined by Fourier transform infrared spectroscopy, and the thermal stability of the unmodified film was improved by in situ polymerization. Scanning electron microscopy images indicated that the modifier was uniformly dispersed in the fiber film, resulting in an improvement in its mechanical properties. The modified straw fiber films could be degraded after mulching for approximately 50 days. Overall, the superior properties of the modified straw fiber film lend it great potential for agricultural application. Full article
Show Figures

Figure 1

18 pages, 2563 KiB  
Article
Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard (Brassica juncea L.)
by Neha, Gajender Yadav, Rajender Kumar Yadav, Ashwani Kumar, Aravind Kumar Rai, Junya Onishi, Keisuke Omori and Parbodh Chander Sharma
Sustainability 2022, 14(7), 4146; https://doi.org/10.3390/su14074146 - 31 Mar 2022
Cited by 9 | Viewed by 2522
Abstract
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. [...] Read more.
Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m−1) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m−1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions. Full article
Show Figures

Figure 1

18 pages, 1793 KiB  
Article
Comparative Study on Extraction of Cellulose Fiber from Rice Straw Waste from Chemo-Mechanical and Pulping Method
by Nur Amirah Mamat Razali, Risby Mohd Sohaimi, Raja Nor Izawati Raja Othman, Norli Abdullah, Siti Zulaikha Ngah Demon, Latifah Jasmani, Wan Mohd Zain Wan Yunus, Wan Mohd Hanif Wan Ya’acob, Emee Marina Salleh, Mohd Nurazzi Norizan and Norhana Abdul Halim
Polymers 2022, 14(3), 387; https://doi.org/10.3390/polym14030387 - 19 Jan 2022
Cited by 68 | Viewed by 11456
Abstract
Inspired by nature, cellulose extracted from plant wastes has been explored, due to its great potential as an alternative for synthetic fiber and filler that contributes to structural performance. The drive of this study was to extract, treat, and evaluate the characteristics of [...] Read more.
Inspired by nature, cellulose extracted from plant wastes has been explored, due to its great potential as an alternative for synthetic fiber and filler that contributes to structural performance. The drive of this study was to extract, treat, and evaluate the characteristics of rice straw (RS) (Oryza sativa L.) cellulose as a biodegradable reinforcement to be utilized in polymer base materials. Two routes of extraction and treatment were performed via the pulping (Route 1) and chemo-mechanical methods (Route 2), in order to discover comparative characteristics of the synthesized cellulose fiber. Comprehensive characterization of RS cellulose was carried out to determine crystallinity, surface morphology, and chemical bonding properties, using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infra-red (FTIR), respectively. The XRD test results showed that the crystallinity index (CI) of cellulose powder (CP) decreased after the surface modification treatment, Route 2, from 64.50 to 50.10% CI for modified cellulose powder (MCP), due to the surface alteration of cellulose structure. From Route 1, the crystallinity of the fibers decreased up to 33.5% (dissolve cellulose, DC) after the pulp went through the surface modification and dissolution processes, resulting from the transformation of cellulose phase into para-crystalline structure. FESEM micrographs displayed a significant reduction of raw RS diameter from 7.78 µm to 3.34 µm (treated by Route 1) and 1.06 µm (treated by Route 2). The extracted and treated cellulose via both routes, which was considerably dominated by cellulose II because of the high percentage of alkaline used, include the dissolve cellulose (DC). The dissolution process, using NMMO solvent, was performed on the pulp fiber produced by Route 1. The fiber change from cellulose I to cellulose II after undergoes the process. Thus, the dissolution process maintains cellulose II but turned the pulp to the cellulose solution. The acquired characteristics of cellulose from RS waste, extracted by the employed methods, have a considerably greater potential for further application in numerous industries. It was concluded that the great achievement of extracted RS is obtained the nanosized fibers after surface modification treatment, which is very useful for filler in structural composite applications. Full article
(This article belongs to the Special Issue Polymers and Fibers)
Show Figures

Figure 1

12 pages, 1614 KiB  
Article
Measurements of Chemical Compositions in Corn Stover and Wheat Straw by Near-Infrared Reflectance Spectroscopy
by Tao Guo, Luming Dai, Baipeng Yan, Guisheng Lan, Fadi Li, Fei Li, Faming Pan and Fangbin Wang
Animals 2021, 11(11), 3328; https://doi.org/10.3390/ani11113328 - 22 Nov 2021
Cited by 17 | Viewed by 3258
Abstract
Rapid, non-destructive methods for determining the biochemical composition of straw are crucial in ruminant diets. In this work, ground samples of corn stover (n = 156) and wheat straw (n = 135) were scanned using near-infrared spectroscopy (instrument NIRS DS2500). Samples [...] Read more.
Rapid, non-destructive methods for determining the biochemical composition of straw are crucial in ruminant diets. In this work, ground samples of corn stover (n = 156) and wheat straw (n = 135) were scanned using near-infrared spectroscopy (instrument NIRS DS2500). Samples were divided into two sets, with one set used for calibration (corn stover, n = 126; wheat straw, n = 108) and the remaining set used for validation (corn stover, n = 30; wheat straw, n = 27). Calibration models were developed utilizing modified partial least squares (MPLS) regression with internal cross validation. Concentrations of moisture, crude protein (CP), and neutral detergent fiber (NDF) were successfully predicted in corn stover, and CP and moisture were in wheat straw, but other nutritional components were not predicted accurately when using single-crop samples. All samples were then combined to form new calibration (n = 233) and validation (n = 58) sets comprised of both corn stover and wheat straw. For these combined samples, the CP, NDF, and ADF were predicted successfully; the coefficients of determination for calibration (RSQC) were 0.9625, 0.8349, and 0.8745, with ratios of prediction to deviation (RPD) of 6.872, 2.210, and 2.751, respectively. The acid detergent lignin (ADL) and moisture were classified as moderately useful, with RSQC values of 0.7939 (RPD = 2.259) and 0.8342 (RPD = 1.868), respectively. Although the prediction of hemicellulose was only useful for screening purposes (RSQC = 0.4388, RPD = 1.085), it was concluded that NIRS is a suitable technique to rapidly evaluate the nutritional value of forage crops. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

20 pages, 5348 KiB  
Article
Valorization of Rice Straw into Cellulose Microfibers for the Reinforcement of Thermoplastic Corn Starch Films
by Pedro A. V. Freitas, Carla I. La Fuente Arias, Sergio Torres-Giner, Chelo González-Martínez and Amparo Chiralt
Appl. Sci. 2021, 11(18), 8433; https://doi.org/10.3390/app11188433 - 11 Sep 2021
Cited by 32 | Viewed by 4776
Abstract
In the present study, agro-food waste derived rice straw (RS) was valorized into cellulose microfibers (CMFs) using a green process of combined ultrasound and heating treatments and were thereafter used to improve the physical properties of thermoplastic starch films (TPS). Mechanical defibrillation of [...] Read more.
In the present study, agro-food waste derived rice straw (RS) was valorized into cellulose microfibers (CMFs) using a green process of combined ultrasound and heating treatments and were thereafter used to improve the physical properties of thermoplastic starch films (TPS). Mechanical defibrillation of the fibers gave rise to CMFs with cumulative frequencies of length and diameters below 200 and 5–15 µm, respectively. The resultant CMFs were successfully incorporated at, 1, 3, and 5 wt% into TPS by melt mixing and also starch was subjected to dry heating (DH) modification to yield TPS modified by dry heating (TPSDH). The resultant materials were finally shaped into films by thermo-compression and characterized. It was observed that both DH modification and fiber incorporation at 3 and 5 wt% loadings interfered with the starch gelatinization, leading to non-gelatinized starch granules in the biopolymer matrix. Thermo-compressed films prepared with both types of starches and reinforced with 3 wt% CMFs were more rigid (percentage increases of ~215% for TPS and ~207% for the TPSDH), more resistant to break (~100% for TPS and ~60% for TPSDH), but also less extensible (~53% for TPS and ~78% for TPSDH). The incorporation of CMFs into the TPS matrix at the highest contents also promoted a decrease in water vapor (~15%) and oxygen permeabilities (~30%). Finally, all the TPS composite films showed low changes in terms of optical properties and equilibrium moisture, being less soluble in water than the TPSDH films. Full article
(This article belongs to the Special Issue Sustainable Polymer Technologies for a Circular Economy)
Show Figures

Figure 1

Back to TopTop