Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = mitochondriotropic antioxidants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2235 KiB  
Review
Assisted Reproduction Technologies (ART): Impact of Mitochondrial (Dys)function and Antioxidant Therapy
by Filipa C. Ferreira, José Teixeira, Fernando Lidon, Fernando Cagide, Fernanda Borges and Rosa M. L. N. Pereira
Animals 2025, 15(3), 289; https://doi.org/10.3390/ani15030289 - 21 Jan 2025
Cited by 2 | Viewed by 1662
Abstract
In the last decades, major changes in ecosystems related to industrial development and environmental modifications have had a direct impact on mammalian fertility, as well as on biodiversity. It is widely demonstrated that all these changes impair reproductive function. Several studies have connected [...] Read more.
In the last decades, major changes in ecosystems related to industrial development and environmental modifications have had a direct impact on mammalian fertility, as well as on biodiversity. It is widely demonstrated that all these changes impair reproductive function. Several studies have connected the increase of reactive oxygen species (ROS) generated in mitochondria to the recently identified decline of fertility due to various factors, including heat stress. The study of antioxidants, and especially of mitochondria targeted antioxidants, has been focused on identifying more efficient and less toxic therapies that could circumvent fertility problems. These antioxidants can be derived from natural compounds in the diet and delivered to the mitochondria in more effective forms, providing a much more natural therapy. The use of mitochondriotropic diet-based antioxidants in assisted reproductive technologies (ART) may be an important way to overcome low fertility, allowing the conservation of animal biodiversity and productivity. This paper provides a concise review of the current state of the art on this topic, with a particular focus on the antioxidants mitoquinone, AntiOxBEN2, AntiOxCIN4, urolithin A and piperine, and their effects on bovine and other animal species. Full article
(This article belongs to the Special Issue Technological Applications in Farm Animal Reproduction)
Show Figures

Figure 1

16 pages, 4027 KiB  
Article
First Report on Cationic Triphenylphosphonium Compounds as Mitochondriotropic H3R Ligands with Antioxidant Properties
by Tobias Werner, Tito Añazco, Paula Osses-Mendoza, Alejandro Castro-Álvarez, Cristian O. Salas, Raquel Bridi, Holger Stark and Christian Espinosa-Bustos
Antioxidants 2024, 13(11), 1345; https://doi.org/10.3390/antiox13111345 - 1 Nov 2024
Viewed by 1633
Abstract
Neurodegenerative diseases are a major public health problem due to the aging population and multifaceted pathology; therefore, the search for new therapeutic alternatives is of the utmost importance. In this sense, a series of six 1-(3-phenoxypropyl)piperidines alkyl-linked to a triphenylphosphonium cation derivative were [...] Read more.
Neurodegenerative diseases are a major public health problem due to the aging population and multifaceted pathology; therefore, the search for new therapeutic alternatives is of the utmost importance. In this sense, a series of six 1-(3-phenoxypropyl)piperidines alkyl-linked to a triphenylphosphonium cation derivative were synthesized as H3R ligands with antioxidant properties to regulate excessive mitochondrial oxidative stress and contribute to potential new therapeutic approaches for neurodegenerative diseases. Radioligand displacement studies revealed high affinity for H3R with Ki values in the low to moderate two-digit nanomolar range for all compounds. Compound 6e showed the highest affinity (Ki H3R = 14.1 nM), comparable to that of pitolisant. Antioxidative effects were evaluated as radical-scavenging properties using the ORAC assay, in which all derivatives showed low to moderate activity. On the other hand, cytotoxic effects in SH-SY5Y neuroblastoma cells were investigated using the colorimetric alamar blue assay, which revealed significant effects on cell viability with an unequivocally structure–toxicity relationship. Finally, docking and molecular simulation studies were used to determine the H3R binding form, which will allow us to further modify the compounds to establish a robust structure-activity relationship and find a lead compound with therapeutic utility in neurodegenerative diseases. Full article
Show Figures

Figure 1

28 pages, 3457 KiB  
Article
Cytotoxicity and Mitochondrial Effects of Phenolic and Quinone-Based Mitochondria-Targeted and Untargeted Antioxidants on Human Neuronal and Hepatic Cell Lines: A Comparative Analysis
by Carlos Fernandes, Afonso J. C. Videira, Caroline D. Veloso, Sofia Benfeito, Pedro Soares, João D. Martins, Beatriz Gonçalves, José F. S. Duarte, António M. S. Santos, Paulo J. Oliveira, Fernanda Borges, José Teixeira and Filomena S. G. Silva
Biomolecules 2021, 11(11), 1605; https://doi.org/10.3390/biom11111605 - 29 Oct 2021
Cited by 12 | Viewed by 3605
Abstract
Mitochondriotropic antioxidants (MC3, MC6.2, MC4 and MC7.2) based on dietary antioxidants and analogs (caffeic, hydrocaffeic, trihydroxyphenylpropanoic and trihydroxycinnamic acids) were developed. In this study, we evaluate and compare the cytotoxicity profile of novel mitochondria-targeted molecules (generally [...] Read more.
Mitochondriotropic antioxidants (MC3, MC6.2, MC4 and MC7.2) based on dietary antioxidants and analogs (caffeic, hydrocaffeic, trihydroxyphenylpropanoic and trihydroxycinnamic acids) were developed. In this study, we evaluate and compare the cytotoxicity profile of novel mitochondria-targeted molecules (generally known as MitoCINs) on human HepG2 and differentiated SH-SY5Y cells with the quinone-based mitochondria-targeted antioxidants MitoQ and SkQ1 and with two non-targeted antioxidants, resveratrol and coenzyme Q10 (CoQ10). We further evaluate their effects on mitochondrial membrane potential, cellular oxygen consumption and extracellular acidification rates. Overall, MitoCINs derivatives reduced cell viability at concentrations about six times higher than those observed with MitoQ and SkQ1. A toxicity ranking for both cell lines was produced: MC4 < MC7.2 < MC3 < MC6.2. These results suggest that C-6 carbon linker and the presence of a pyrogallol group result in lower cytotoxicity. MC3 and MC6.2 affected the mitochondrial function more significantly relative to MitoQ, SkQ1, resveratrol and CoQ10, while MC4 and MC7.2 displayed around 100–1000 times less cytotoxicity than SkQ1 and MitoQ. Based on the mitochondrial and cytotoxicity cellular data, MC4 and MC7.2 are proposed as leads that can be optimized to develop safe drug candidates with therapeutic application in mitochondrial oxidative stress-related diseases. Full article
Show Figures

Figure 1

20 pages, 2394 KiB  
Article
Fine-Tuning the Biological Profile of Multitarget Mitochondriotropic Antioxidants for Neurodegenerative Diseases
by Daniel Chavarria, Ophelie Da Silva, Sofia Benfeito, Sandra Barreiro, Jorge Garrido, Fernando Cagide, Pedro Soares, Fernando Remião, Xavier Brazzolotto, Florian Nachon, Paulo J. Oliveira, José Dias and Fernanda Borges
Antioxidants 2021, 10(2), 329; https://doi.org/10.3390/antiox10020329 - 23 Feb 2021
Cited by 11 | Viewed by 4123
Abstract
Neurotransmitter depletion and mitochondrial dysfunction are among the multiple pathological events that lead to neurodegeneration. Following our previous studies related with the development of multitarget mitochondriotropic antioxidants, this study aims to evaluate whether the π-system extension on the chemical scaffolds of AntiOXCIN2 and [...] Read more.
Neurotransmitter depletion and mitochondrial dysfunction are among the multiple pathological events that lead to neurodegeneration. Following our previous studies related with the development of multitarget mitochondriotropic antioxidants, this study aims to evaluate whether the π-system extension on the chemical scaffolds of AntiOXCIN2 and AntiOXCIN3 affects their bioactivity and safety profiles. After the synthesis of four triphenylphosphonium (TPP+) conjugates (compounds 25), we evaluated their antioxidant properties and their effect on neurotransmitter-metabolizing enzymes. All compounds were potent equine butyrylcholinesterase (eqBChE) and moderate electric eel acetylcholinesterase (eeAChE) inhibitors, with catechols 4 and 5 presenting lower IC50 values than AntiOXCIN2 and AntiOXCIN3, respectively. However, differences in the inhibition potency and selectivity of compounds 25 towards non-human and human cholinesterases (ChEs) were observed. Co-crystallization studies with compounds 25 in complex with human ChEs (hChEs) showed that these compounds exhibit different binging modes to hAChE and hBChE. Unlike AntiOXCINs, compounds 25 displayed moderate human monoamine oxidase (hMAO) inhibitory activity. Moreover, compounds 4 and 5 presented higher ORAC-FL indexes and lower oxidation potential values than the corresponding AntiOXCINs. Catechols 4 and 5 exhibited broader safety windows in differentiated neuroblastoma cells than benzodioxole derivatives 2 and 3. Compound 4 is highlighted as a safe mitochondria-targeted antioxidant with dual ChE/MAO inhibitory activity. Overall, this work is a contribution for the development of dual therapeutic agents addressing both mitochondrial oxidative stress and neurotransmitter depletion. Full article
Show Figures

Figure 1

13 pages, 2064 KiB  
Article
Exploring the Multi-Target Performance of Mitochondriotropic Antioxidants against the Pivotal Alzheimer’s Disease Pathophysiological Hallmarks
by Sofia Benfeito, Carlos Fernandes, Santiago Vilar, Fernando Remião, Eugenio Uriarte and Fernanda Borges
Molecules 2020, 25(2), 276; https://doi.org/10.3390/molecules25020276 - 9 Jan 2020
Cited by 13 | Viewed by 4542
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease featuring progressive and degenerative neurological impairments resulting in memory loss and cognitive decline. The specific mechanisms underlying AD are still poorly understood, but it is suggested that a deficiency in the brain neurotransmitter acetylcholine, [...] Read more.
Alzheimer disease (AD) is the most common neurodegenerative disease featuring progressive and degenerative neurological impairments resulting in memory loss and cognitive decline. The specific mechanisms underlying AD are still poorly understood, but it is suggested that a deficiency in the brain neurotransmitter acetylcholine, the deposition of insoluble aggregates of fibrillar β-amyloid 1–42 (Aβ42), and iron and glutamate accumulation play an important role in the disease progress. Despite the existence of approved cholinergic drugs, none of them demonstrated effectiveness in modifying disease progression. Accordingly, the development of new chemical entities acting on more than one target is attracting progressively more attention as they can tackle intricate network targets and modulate their effects. Within this endeavor, a series of mitochondriotropic antioxidants inspired on hydroxycinnamic (HCA’s) scaffold were synthesized, screened toward cholinesterases and evaluated as neuroprotectors in a differentiated human SH-SY5Y cell line. From the series, compounds 7 and 11 with a 10-carbon chain can be viewed as multi-target leads for the treatment of AD, as they act as dual and bifunctional cholinesterase inhibitors and prevent the neuronal damage caused by diverse aggressors related to protein misfolding and aggregation, iron accumulation and excitotoxicity. Full article
(This article belongs to the Special Issue Design, Synthesis, and Biological Evaluation of Enzyme Inhibitors)
Show Figures

Figure 1

Back to TopTop