Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = mitochondrial turnover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5544 KiB  
Article
Increased Exercise Tolerance in G6PD African Variant Mice Driven by Metabolic Adaptations and Erythrophagocytosis
by Francesca I. Cendali, Abby L. Grier, Christina Lisk, Monika Dzieciatkowska, Zachary Haiman, Julie A. Reisz, Julie Harral, Daniel Stephenson, Ariel M. Hay, Eric P. Wartchow, Paul W. Buehler, Kirk C. Hansen, Travis Nemkov, James C. Zimring, David C. Irwin and Angelo D’Alessandro
Antioxidants 2025, 14(8), 927; https://doi.org/10.3390/antiox14080927 - 29 Jul 2025
Viewed by 331
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymatic disorder, affects over 500 million people worldwide and is often linked to exercise intolerance due to oxidative stress, but its true impact on physical performance remains unclear. This study aimed to evaluate the physiological and [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymatic disorder, affects over 500 million people worldwide and is often linked to exercise intolerance due to oxidative stress, but its true impact on physical performance remains unclear. This study aimed to evaluate the physiological and metabolic effects of G6PD deficiency on endurance capacity. Using humanized mice carrying the African G6PD variant [V68M; N126D] (hG6PDA−), we show that despite reduced pentose phosphate pathway activity, these mice exhibit a 10.8% increase in treadmill critical speed (CS)—suggesting enhanced endurance capacity. Multi-omics profiling across red blood cells, plasma, skeletal muscle, spleen, kidney, and liver reveals metabolic adaptations, including elevated glycolysis, fatty acid oxidation, and increased mitochondrial activity, alongside heightened oxidative phosphorylation in muscle and accelerated red blood cell turnover in the spleen and liver. These findings indicate that systemic metabolic reprogramming may offset antioxidant deficiencies, potentially conferring a performance advantage. Given that G6PD deficiency affects up to 13% of African Americans and is associated with cardiovascular health disparities, our results challenge conventional exercise restrictions and highlight the need for personalized exercise guidelines for affected individuals. Full article
(This article belongs to the Special Issue Blood Cells and Redox Homeostasis in Health and Disease, 2nd Edition)
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Viewed by 555
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

32 pages, 21562 KiB  
Article
Major Traumatic Injury and Exposure to Mitochondrial-Derived Damage-Associated Molecular Patterns Promotes Neutrophil Survival Accompanied by Stabilisation of the Anti-Apoptotic Protein Mcl-1
by Thomas Nicholson, Michael Macleod, Antonio Belli, Janet M. Lord and Jon Hazeldine
Cells 2025, 14(10), 754; https://doi.org/10.3390/cells14100754 - 21 May 2025
Viewed by 523
Abstract
Traumatic injury leads to an extension of the half-life of circulating neutrophils. However, how quickly neutrophil apoptosis is delayed post-injury is currently unknown, as are the underlying mechanisms and factors that promote this extension of lifespan. During the ultra-early (≤1 h) and acute [...] Read more.
Traumatic injury leads to an extension of the half-life of circulating neutrophils. However, how quickly neutrophil apoptosis is delayed post-injury is currently unknown, as are the underlying mechanisms and factors that promote this extension of lifespan. During the ultra-early (≤1 h) and acute (4–12 and 48–72 h) post-injury phases, we collected blood samples from 73 adult trauma patients. Following ex vivo culture, neutrophil apoptosis was measured, alongside caspase-3 activation and expression of the anti-apoptotic protein Mcl-1. To identify factors that may promote neutrophil survival post-trauma, neutrophils from healthy controls (HCs) were cultured with mitochondrial-derived damage-associated molecular patterns (mtDAMPs) or mitochondrial DNA (mtDNA). Accompanied by reduced mitochondrial membrane depolarisation, delayed Mcl-1 turnover, and reduced caspase-3 activation, the ex vivo lifespan of neutrophils from trauma patients was significantly enhanced in a protein synthesis-independent manner within minutes to hours after injury. Neutrophils from HCs exhibited delayed apoptosis when cultured in media supplemented with trauma patient serum, which occurred alongside stabilisation of Mcl-1. Culturing HCs neutrophils with mtDAMPs or mtDNA significantly delayed apoptosis rates, promoted stabilisation of Mcl-1, and reduced caspase-3 activation. The release of mtDAMPs from damaged tissue may drive post-trauma immune dysregulation by promoting the survival of dysfunctional neutrophils. Full article
(This article belongs to the Collection Feature Papers in ‘Cellular Immunology’)
Show Figures

Graphical abstract

35 pages, 3801 KiB  
Review
Targeting the Electron Transport System for Enhanced Longevity
by Marko Radovic, Lucas P. Gartzke, Simon E. Wink, Joris A. van der Kleij, Frouwkje A. Politiek and Guido Krenning
Biomolecules 2025, 15(5), 614; https://doi.org/10.3390/biom15050614 - 23 Apr 2025
Cited by 1 | Viewed by 2733
Abstract
Damage to mitochondrial DNA (mtDNA) results in defective electron transport system (ETS) complexes, initiating a cycle of impaired oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) production, and chronic low-grade inflammation (inflammaging). This culminates in energy failure, cellular senescence, and progressive tissue degeneration. [...] Read more.
Damage to mitochondrial DNA (mtDNA) results in defective electron transport system (ETS) complexes, initiating a cycle of impaired oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) production, and chronic low-grade inflammation (inflammaging). This culminates in energy failure, cellular senescence, and progressive tissue degeneration. Rapamycin and metformin are the most extensively studied longevity drugs. Rapamycin inhibits mTORC1, promoting mitophagy, enhancing mitochondrial biogenesis, and reducing inflammation. Metformin partially inhibits Complex I, lowering reverse electron transfer (RET)-induced ROS formation and activating AMPK to stimulate autophagy and mitochondrial turnover. Both compounds mimic caloric restriction, shift metabolism toward a catabolic state, and confer preclinical—and, in the case of metformin, clinical—longevity benefits. More recently, small molecules directly targeting mitochondrial membranes and ETS components have emerged. Compounds such as Elamipretide, Sonlicromanol, SUL-138, and others modulate metabolism and mitochondrial function while exhibiting similarities to metformin and rapamycin, highlighting their potential in promoting longevity. The key question moving forward is whether these interventions should be applied chronically to sustain mitochondrial health or intermittently during episodes of stress. A pragmatic strategy may combine chronic metformin use with targeted mitochondrial therapies during acute physiological stress. Full article
Show Figures

Graphical abstract

15 pages, 1379 KiB  
Review
The Intersection of Mitophagy and Autism Spectrum Disorder: A Systematic Review
by Eleonora Kovacheva, Maria Gevezova, Nikolay Mehterov, Maria Kazakova and Victoria Sarafian
Int. J. Mol. Sci. 2025, 26(5), 2217; https://doi.org/10.3390/ijms26052217 - 28 Feb 2025
Viewed by 1509
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental and biobehavioral conditions that arises from complex interactions between environmental factors and physiological development in genetically predisposed individuals. Among the most frequently observed metabolic abnormalities in ASD is mitochondrial dysfunction. Mitochondria respond to cellular [...] Read more.
Autism spectrum disorder (ASD) is a group of neurodevelopmental and biobehavioral conditions that arises from complex interactions between environmental factors and physiological development in genetically predisposed individuals. Among the most frequently observed metabolic abnormalities in ASD is mitochondrial dysfunction. Mitochondria respond to cellular stress by altering their dynamics or initiating mitophagy. In neurons, the buildup of dysfunctional mitochondria and reactive oxygen species (ROS) poses a significant risk, as these cells cannot regenerate through division. To safeguard mitochondrial health, cells rely on an efficient “clean-up mechanism” to remove compromised organelles. Mitophagy, a specific form of autophagy, is responsible for regulating the turnover of flawed and non-functional mitochondria. Impairments in this process result in the accumulation of defective mitochondria in neurons, a characteristic of several neurodegenerative disorders associated with behavioral abnormalities. This systematic review offers an in-depth summary of the present knowledge of mitophagy and underscores its pivotal role in the pathogenesis of ASD. Full article
(This article belongs to the Special Issue Molecular Signatures in Autism Spectrum Disorders)
Show Figures

Figure 1

18 pages, 4945 KiB  
Article
Transgenic iPSC Lines with Genetically Encoded MitoTimer to Study Mitochondrial Biogenesis in Dopaminergic Neurons with Tauopathy
by Julia A. Nadtochy, Sergey P. Medvedev, Elena V. Grigor’eva, Sophia V. Pavlova, Julia M. Minina, Anton V. Chechushkov, Anastasia A. Malakhova, Liudmila V. Kovalenko and Suren M. Zakian
Biomedicines 2025, 13(3), 550; https://doi.org/10.3390/biomedicines13030550 - 21 Feb 2025
Viewed by 1115
Abstract
Background: Tauopathy has been identified as a prevalent causative agent of neurodegenerative diseases, including frontotemporal dementia with parkinsonism-17 (FTDP-17). This rare hereditary neurodegenerative condition is characterised by the manifestation of parkinsonism and behavioural changes. The majority of cases of FTDP-17 are associated with [...] Read more.
Background: Tauopathy has been identified as a prevalent causative agent of neurodegenerative diseases, including frontotemporal dementia with parkinsonism-17 (FTDP-17). This rare hereditary neurodegenerative condition is characterised by the manifestation of parkinsonism and behavioural changes. The majority of cases of FTDP-17 are associated with mutations in the MAPT gene, which encodes the tau protein. MAPT mutations lead to disruption of the balance between 3R and 4R tau forms, which causes destabilisation of microtubules and impairment of cellular organelle functions, particularly mitochondrial dysfunction. The development of model systems and tools for studying the molecular, genetic, and biochemical mechanisms underlying FTDP-17 and testing therapies at the cellular level is an urgent necessity. Methods: In this study, we generated transgenic lines of induced pluripotent stem cells (iPSCs) from a patient carrying the pathogenic mutation c.2013T > G (rs63750756, p.N279K) of MAPT and a healthy donor. A doxycycline-controlled transgene of the genetically encoded biosensor MitoTimer was integrated into the AAVS1 locus of these cells. The MitoTimer biosensor allows for lifetime monitoring of the turnover of mitochondria in neuronal cells derived from directed iPSC differentiation. The fact that transcription of the transgene can be induced by doxycycline provides additional possibilities for pulse labelling of newly formed mitochondria. Results: Transgenic iPSC lines provide a unique tool to study the molecular and genetic mechanisms of FTDP-17 caused by the presence of the c.2013T > G (p.N279K) mutation, as well as to test potential drugs in vitro. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

25 pages, 4657 KiB  
Article
Implant-Derived S. aureus Isolates Drive Strain-Specific Invasion Dynamics and Bioenergetic Alterations in Osteoblasts
by Lei Song, Lea-Sophie Schwinn, Juliane Barthel, Vanessa Ketter, Philipp Lechler, Uwe Linne, Ardawan J. Rastan, Sebastian Vogt, Steffen Ruchholtz, Jürgen R. J. Paletta and Madeline Günther
Antibiotics 2025, 14(2), 119; https://doi.org/10.3390/antibiotics14020119 - 23 Jan 2025
Cited by 1 | Viewed by 1127
Abstract
Background: Implants are integral to modern orthopedic surgery. The outcomes are good, but infections remain a serious issue. Staphylococcus aureus (S. aureus), along with Staphylococcus epidermidis, are predominant pathogens responsible for implant-associated infections, as conventional antibiotic treatments often fail due [...] Read more.
Background: Implants are integral to modern orthopedic surgery. The outcomes are good, but infections remain a serious issue. Staphylococcus aureus (S. aureus), along with Staphylococcus epidermidis, are predominant pathogens responsible for implant-associated infections, as conventional antibiotic treatments often fail due to biofilm formation or the pathogens’ ability to invade cells and to persist intracellularly. Objectives: This study therefore focused on interactions of S. aureus isolates from infected implants with MG63 and SaOS2 osteoblasts by investigating the adhesion, invasion, and the impact on the bioenergetics of osteoblasts. Methods and Results: We found that the ability of S. aureus to adhere to osteoblasts depends on the isolate and was not associated with a single gene or expression pattern of characteristic adhesion proteins, and further, was not correlated with invasion. However, analysis of invasion capabilities identified better invasion conditions for S. aureus isolates with the SaOS2 osteoblastic cells. Interestingly, metabolic activity of osteoblasts remained unaffected by S. aureus infection, indicating cell survival. In contrast, respiration assays revealed an altered mitochondrial bioenergetic turnover in infected cells. While basal as well as maximal respiration in MG63 osteoblasts were not influenced statistically by S. aureus infections, we found increased non-mitochondrial respiration and enhanced glycolytic activity in the osteoblasts, which was again, more pronounced in the SaOS2 osteoblastic cells. Conclusions: Our findings highlight the complexity of S. aureus-host interactions, where both the pathogen and the host cell contribute to intracellular persistence and survival, representing a major factor for therapeutic failures. Full article
Show Figures

Figure 1

18 pages, 2196 KiB  
Review
Neuronal Cell Rearrangement During Aging: Antioxidant Compounds as a Potential Therapeutic Approach
by Erjola Bej, Patrizia Cesare, Michele d’Angelo, Anna Rita Volpe and Vanessa Castelli
Cells 2024, 13(23), 1945; https://doi.org/10.3390/cells13231945 - 23 Nov 2024
Cited by 2 | Viewed by 1244
Abstract
Aging is a natural process that leads to time-related changes and a decrease in cognitive abilities, executive functions, and attention. In neuronal aging, brain cells struggle to respond to oxidative stress. The structure, function, and survival of neurons can be mediated by different [...] Read more.
Aging is a natural process that leads to time-related changes and a decrease in cognitive abilities, executive functions, and attention. In neuronal aging, brain cells struggle to respond to oxidative stress. The structure, function, and survival of neurons can be mediated by different pathways that are sensitive to oxidative stress and age-related low-energy states. Mitochondrial impairment is one of the most noticeable signs of brain aging. Damaged mitochondria are thought to be one of the main causes that feed the inflammation related to aging. Also, protein turnover is involved in age-related impairments. The brain, due to its high oxygen usage, is particularly susceptible to oxidative damage. This review explores the mechanisms underlying neuronal cell rearrangement during aging, focusing on morphological changes that contribute to cognitive decline and increased susceptibility to neurodegenerative diseases. Potential therapeutic approaches are discussed, including the use of antioxidants (e.g., Vitamin C, Vitamin E, glutathione, carotenoids, quercetin, resveratrol, and curcumin) to mitigate oxidative damage, enhance mitochondrial function, and maintain protein homeostasis. This comprehensive overview aims to provide insights into the cellular and molecular processes of neuronal aging and highlight promising therapeutic avenues to counteract age-related neuronal deterioration. Full article
(This article belongs to the Special Issue Molecular Therapeutic Advances for Neurodegenerative Diseases)
Show Figures

Figure 1

27 pages, 1737 KiB  
Review
Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy
by Po-Yuan Ke and Chau-Ting Yeh
Pathogens 2024, 13(11), 980; https://doi.org/10.3390/pathogens13110980 - 8 Nov 2024
Viewed by 2296
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining [...] Read more.
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host–virus interactions. Full article
Show Figures

Graphical abstract

13 pages, 2220 KiB  
Article
Oligonol®, an Oligomerized Polyphenol from Litchi chinensis, Enhances Branched-Chain Amino Acid Transportation and Catabolism to Alleviate Sarcopenia
by Yun-Ching Chang, Yu-Chi Chen, Yin-Ching Chan, Cheng Liu and Sue-Joan Chang
Int. J. Mol. Sci. 2024, 25(21), 11549; https://doi.org/10.3390/ijms252111549 - 27 Oct 2024
Cited by 1 | Viewed by 2363
Abstract
Branched-chain amino acids (BCAAs) are essential for muscle protein synthesis and are widely acknowledged for mitigating sarcopenia. Oligonol® (Olg), a low-molecular-weight polyphenol from Litchi chinensis, has also been found to attenuate sarcopenia by improving mitochondrial quality and positive protein turnover. This [...] Read more.
Branched-chain amino acids (BCAAs) are essential for muscle protein synthesis and are widely acknowledged for mitigating sarcopenia. Oligonol® (Olg), a low-molecular-weight polyphenol from Litchi chinensis, has also been found to attenuate sarcopenia by improving mitochondrial quality and positive protein turnover. This study aims to investigate the effect of Olg on BCAA-stimulated protein synthesis in sarcopenia. In sarcopenic C57BL/6 mice and senescence-accelerated mouse-prone 8 (SAMP8) mice, BCAAs were significantly decreased in skeletal muscle but increased in blood serum. Furthermore, the expressions of membrane L-type amino acid transporter 1 (LAT1) and branched-chain amino acid transaminase 2 (BCAT2) in skeletal muscle were lower in aged mice than in young mice. The administration of Olg for 8 weeks significantly increased the expressions of membrane LAT1 and BCAT2 in the skeletal muscle when compared with non-treated SAMP8 mice. We further found that BCAA deprivation via LAT1-siRNA in C2C12 myotubes inhibited the signaling of protein synthesis and facilitated ubiquitination degradation of BCAT2. In C2C12 cells mimicking sarcopenia, Olg combined with BCAA supplementation enhanced mTOR/p70S6K activity more than BCAA alone. However, blocked LAT1 by JPH203 reversed the synergistic effect of the combination of Olg and BCAAs. Taken together, changes in LAT1 and BCAT2 during aging profoundly alter BCAA availability and nutrient signaling in aged mice. Olg increases BCAA-stimulated protein synthesis via modulating BCAA transportation and BCAA catabolism. Combining Olg and BCAAs may be a useful nutritional strategy for alleviating sarcopenia. Full article
Show Figures

Figure 1

22 pages, 1524 KiB  
Review
Insights into Metabolic Reprogramming in Tumor Evolution and Therapy
by Ching-Feng Chiu, Jonathan Jaime G. Guerrero, Ric Ryan H. Regalado, Jiayan Zhou, Kin Israel Notarte, Yu-Wei Lu, Paolo C. Encarnacion, Cidne Danielle D. Carles, Edrian M. Octavo, Dan Christopher I. Limbaroc, Charupong Saengboonmee and Shih-Yi Huang
Cancers 2024, 16(20), 3513; https://doi.org/10.3390/cancers16203513 - 17 Oct 2024
Cited by 5 | Viewed by 3225 | Correction
Abstract
Background: Cancer remains a global health challenge, characterized not just by uncontrolled cell proliferation but also by the complex metabolic reprogramming that underlies its development and progression. Objectives: This review delves into the intricate relationship between cancer and its metabolic alterations, drawing an [...] Read more.
Background: Cancer remains a global health challenge, characterized not just by uncontrolled cell proliferation but also by the complex metabolic reprogramming that underlies its development and progression. Objectives: This review delves into the intricate relationship between cancer and its metabolic alterations, drawing an innovative comparison with the cosmological concepts of dark matter and dark energy to highlight the pivotal yet often overlooked role of metabolic reprogramming in tumor evolution. Methods: It scrutinizes the Warburg effect and other metabolic adaptations, such as shifts in lipid synthesis, amino acid turnover, and mitochondrial function, driven by mutations in key regulatory genes. Results: This review emphasizes the significance of targeting these metabolic pathways for therapeutic intervention, outlining the potential to disrupt cancer’s energy supply and signaling mechanisms. It calls for an interdisciplinary research approach to fully understand and exploit the intricacies of cancer metabolism, pointing toward metabolic reprogramming as a promising frontier for developing more effective cancer treatments. Conclusion: By equating cancer’s metabolic complexity with the enigmatic nature of dark matter and energy, this review underscores the critical need for innovative strategies in oncology, highlighting the importance of unveiling and targeting the “dark energy” within cancer cells to revolutionize future therapy and research. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

20 pages, 5699 KiB  
Article
The ABA/LANCL1-2 Hormone/Receptors System Controls ROS Production in Cardiomyocytes through ERRα
by Sonia Spinelli, Lucrezia Guida, Mario Passalacqua, Mirko Magnone, Bujar Caushi, Elena Zocchi and Laura Sturla
Biomedicines 2024, 12(9), 2071; https://doi.org/10.3390/biomedicines12092071 - 11 Sep 2024
Cited by 1 | Viewed by 1314
Abstract
Rat H9c2 cardiomyocytes overexpressing the abscisic acid (ABA) hormone receptors LANCL1 and LANCL2 have an increased mitochondrial proton gradient, respiration, and vitality after hypoxia/reoxygenation. Our aim was to investigate the role of the ABA/LANCL1-2 system in ROS turnover in H9c2 cells. H9c2 cells [...] Read more.
Rat H9c2 cardiomyocytes overexpressing the abscisic acid (ABA) hormone receptors LANCL1 and LANCL2 have an increased mitochondrial proton gradient, respiration, and vitality after hypoxia/reoxygenation. Our aim was to investigate the role of the ABA/LANCL1-2 system in ROS turnover in H9c2 cells. H9c2 cells were retrovirally infected to induce the overexpression or silencing of LANCL1 and LANCL2, without or with the concomitant silencing of the transcription factor ERRα. Enzymes involved in radical production or scavenging were studied by qRT-PCR and Western blot. The mitochondrial proton gradient and ROS were measured with specific fluorescent probes. ROS-generating enzymes decreased, ROS-scavenging enzymes increased, and mitochondrial ROS were reduced in LANCL1/2-overexpressing vs. control cells infected with the empty vector, while the opposite occurred in LANCL1/2-silenced cells. The knockdown of ERRα abrogated all beneficial effects on ROS turnover in LANCL1/2 overexpressing cells. Taken together, these results indicate that the ABA/LANCL1-2 system controls ROS turnover in H9c2 via ERRα. The ABA/LANCL system emerges as a promising target to improve cardiomyocyte mitochondrial function and resilience to oxidative stress. Full article
Show Figures

Graphical abstract

19 pages, 2747 KiB  
Article
Pathological Defects in a Drosophila Model of Alzheimer’s Disease and Beneficial Effects of the Natural Product Lisosan G
by Silvia Bongiorni, Elisabetta Catalani, Ivan Arisi, Francesca Lazzarini, Simona Del Quondam, Kashi Brunetti, Davide Cervia and Giorgio Prantera
Biomolecules 2024, 14(7), 855; https://doi.org/10.3390/biom14070855 - 15 Jul 2024
Cited by 1 | Viewed by 1867
Abstract
Alzheimer’s disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation [...] Read more.
Alzheimer’s disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
Show Figures

Figure 1

18 pages, 9191 KiB  
Article
Selected Lark Mitochondrial Genomes Provide Insights into the Evolution of Second Control Region with Tandem Repeats in Alaudidae (Aves, Passeriformes)
by Chuan Jiang, Hui Kang, Yang Zhou, Wenwen Zhu, Xilong Zhao, Nassoro Mohamed and Bo Li
Life 2024, 14(7), 881; https://doi.org/10.3390/life14070881 - 15 Jul 2024
Cited by 1 | Viewed by 1888
Abstract
The control region (CR) regulates the replication and transcription of the mitochondrial genome (mitogenome). Some avian mitogenomes possess two CRs, and the second control region (CR2) may enhance replication and transcription; however, the CR2 in lark mitogenome appears [...] Read more.
The control region (CR) regulates the replication and transcription of the mitochondrial genome (mitogenome). Some avian mitogenomes possess two CRs, and the second control region (CR2) may enhance replication and transcription; however, the CR2 in lark mitogenome appears to be undergoing loss and is accompanied by tandem repeats. Here, we characterized six lark mitogenomes from Alaudala cheleensis, Eremophila alpestris, Alauda razae, and Calandrella cinerea and reconstructed the phylogeny of Passerida. Through further comparative analysis among larks, we traced the evolutionary process of CR2. The mitochondrial gene orders were conserved in all published lark mitogenomes, with Cytb-trnT-CR1-trnP-ND6-trnE-remnant CR2 with tandem repeat-trnF-rrnS. Phylogenetic analysis revealed Alaudidae and Panuridae are sister groups at the base of Sylvioidea, and sporadic losses of CR2 may occur in their common ancestor. CR sequence and phylogeny analysis indicated CR2 tandem repeats were generated within CR2, originating in the ancestor of all larks, rather than inherited from CR1. The secondary structure comparison of tandem repeat units within and between species suggested slipped-strand mispairing and DNA turnover as suitable models for explaining the origin and evolution of these repeats. This study reveals the evolutionary process of the CR2 containing tandem repeat in Alaudidae, providing reference for understanding the evolutionary characteristics and dynamics of tandem repeats. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

24 pages, 4595 KiB  
Article
Mitochondrial DNA Instability Supersedes Parkin Mutations in Driving Mitochondrial Proteomic Alterations and Functional Deficits in Polg Mutator Mice
by Andrew J. Trease, Steven Totusek, Eliezer Z. Lichter, Kelly L. Stauch and Howard S. Fox
Int. J. Mol. Sci. 2024, 25(12), 6441; https://doi.org/10.3390/ijms25126441 - 11 Jun 2024
Cited by 3 | Viewed by 1878
Abstract
Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we [...] Read more.
Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function. Full article
Show Figures

Figure 1

Back to TopTop