Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mitochondrial dynamics 51 (Mid51)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7965 KiB  
Article
Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increased Mitochondrial Fission In Vitro and Atherosclerosis in High-Fat-Diet-Fed ApoE-/- Mice
by Jinyi Ren, Jiaqing Liu, Jiahui Zhang, Xinxin Hu, Ying Cui, Xiaoqing Wei, Yang Ma, Xia Li and Ying Zhao
Int. J. Mol. Sci. 2024, 25(1), 244; https://doi.org/10.3390/ijms25010244 - 23 Dec 2023
Cited by 8 | Viewed by 2287
Abstract
Novel components of the mitochondrial fission machinery, mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), have been recently described, and their potential therapeutic targets for treating cardiovascular disease have been shown, including acute myocardial infarction (AMI), anthracycline cardiomyopathy and pulmonary [...] Read more.
Novel components of the mitochondrial fission machinery, mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), have been recently described, and their potential therapeutic targets for treating cardiovascular disease have been shown, including acute myocardial infarction (AMI), anthracycline cardiomyopathy and pulmonary arterial hypertension (PAH). Here, we examined the role of MiD49 and MiD51 in atherosclerosis. MiD49/51 expression was increased in the aortic valve endothelial cells (ECs) of high-fat diet-induced atherosclerosis in ApoE-/-mice and IL-8-induced human umbilical vein endothelial cells (HUVECs), which accelerated dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Silencing MiD49/51 reduced atherosclerotic plaque size, increased collagen content, and decreased the IL-8-induced adhesion and proliferation of HUVECs. MiD51 upregulation resulted from decreased microRNA (miR)-107 expression and increased hypoxia-inducible factor-1a (HIF-1a) expression. Treatment with miR-107 mimics decreased atherosclerotic plaque size by reducing HIF-1α and MiD51 production. Both MiD49 and MiD51 were involved in atherosclerotic plaque formation through Drp1-mediated mitochondrial fission, and the involvement of MiD51 in this process was the result of decreased miR-107 expression and increased HIF-1α expression. The miR-107–HIF-1α–MiD51 pathway might provide new therapeutic targets for atherosclerosis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

35 pages, 5074 KiB  
Review
The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases
by Pierce Colpman, Asish Dasgupta and Stephen L. Archer
Cells 2023, 12(14), 1897; https://doi.org/10.3390/cells12141897 - 20 Jul 2023
Cited by 24 | Viewed by 6938
Abstract
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control [...] Read more.
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target. Full article
(This article belongs to the Special Issue Molecular Pathogenesis of PH: Group 1 and Beyond)
Show Figures

Figure 1

29 pages, 3291 KiB  
Review
The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy
by Mulate Zerihun, Surya Sukumaran and Nir Qvit
Int. J. Mol. Sci. 2023, 24(6), 5785; https://doi.org/10.3390/ijms24065785 - 17 Mar 2023
Cited by 82 | Viewed by 12430
Abstract
Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly [...] Read more.
Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs). Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Disease)
Show Figures

Figure 1

19 pages, 2128 KiB  
Review
The role of Mitochondrial Fission Proteins in Mitochondrial Dynamics in Kidney Disease
by Lingyu Qin and Shuhua Xi
Int. J. Mol. Sci. 2022, 23(23), 14725; https://doi.org/10.3390/ijms232314725 - 25 Nov 2022
Cited by 30 | Viewed by 5528
Abstract
Mitochondria have many forms and can change their shape through fusion and fission of the outer and inner membranes, called “mitochondrial dynamics”. Mitochondrial outer membrane proteins, such as mitochondrial fission protein 1 (FIS1), mitochondrial fission factor (MFF), mitochondrial 98 dynamics proteins of 49 [...] Read more.
Mitochondria have many forms and can change their shape through fusion and fission of the outer and inner membranes, called “mitochondrial dynamics”. Mitochondrial outer membrane proteins, such as mitochondrial fission protein 1 (FIS1), mitochondrial fission factor (MFF), mitochondrial 98 dynamics proteins of 49 kDa (MiD49), and mitochondrial dynamics proteins of 51 kDa (MiD51), can aggregate at the outer mitochondrial membrane and thus attract Dynamin-related protein 1 (DRP1) from the cytoplasm to the outer mitochondrial membrane, where DRP1 can perform a scissor-like function to cut a complete mitochondrion into two separate mitochondria. Other organelles can promote mitochondrial fission alongside mitochondria. FIS1 plays an important role in mitochondrial–lysosomal contacts, differentiating itself from other mitochondrial-fission-associated proteins. The contact between the two can also induce asymmetric mitochondrial fission. The kidney is a mitochondria-rich organ, requiring large amounts of mitochondria to produce energy for blood circulation and waste elimination. Pathological increases in mitochondrial fission can lead to kidney damage that can be ameliorated by suppressing their excessive fission. This article reviews the current knowledge on the key role of mitochondrial-fission-associated proteins in the pathogenesis of kidney injury and the role of their various post-translational modifications in activation or degradation of fission-associated proteins and targeted drug therapy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop