Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = migratory behavior flexibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5511 KB  
Article
Diurnal Habitat Selection and Use of Wintering Bar-Headed Geese (Anser indicus) Across Heterogeneous Landscapes on the Yunnan–Guizhou Plateau, Southwest China
by Chao Li, Hong Liu, Ziwen Meng, Weike Yan, Linna Xiao, Yu Lei, Xuyan Zhao, Zhiming Chen and Qiang Liu
Animals 2025, 15(19), 2826; https://doi.org/10.3390/ani15192826 - 28 Sep 2025
Abstract
Wetland loss and human activities are forcing migratory waterbirds to rely on alternative habitats such as croplands, yet their adaptive habitat use across contrasting landscape contexts remains unclear. The Bar-headed Goose (Anser indicus) is a key indicator species in the wetland [...] Read more.
Wetland loss and human activities are forcing migratory waterbirds to rely on alternative habitats such as croplands, yet their adaptive habitat use across contrasting landscape contexts remains unclear. The Bar-headed Goose (Anser indicus) is a key indicator species in the wetland ecosystems of the Yunnan–Guizhou Plateau. Comparing differences in its wintering habitat selection and utilization is of great significance for understanding its ecological adaptation mechanisms and formulating regional wetland conservation strategies. In this study, we compared the diurnal habitat use during the wintering period of Bar-headed Geese at three wetlands (Nianhu, Caohai, and Napahai) representing distinct landscape contexts. We used GPS satellite tracking and dynamic Brownian bridge movement modeling, combined with random forest analysis of environmental variables, to quantify diurnal habitat use and selection at each site. Our results revealed significant regional differences in habitat use. In the agriculture-dominated wetlands (Nianhu and Caohai), geese primarily utilized cropland and marsh habitats (Nianhu: cropland 45.88% ± 30.70%, marsh 42.55% ± 33.17%; Caohai: cropland 62.33% ± 12.16%, marsh 28.61% ± 13.62%). In contrast, at Napahai, which is dominated by natural habitats, geese primarily used grassland (65.92% ± 20.01%) and marsh (26.85% ± 21.88%), with minimal use of cropland (4.21% ± 7.00%). Diurnal habitat selection was influenced by multiple environmental factors, with distinct regional differences identified through random forest modeling. In Nianhu, key factors included distance to supplemental feeding site, distance to grassland, distance to woodland, and distance to open water. In Caohai, distance to grassland, distance to nocturnal roost site, distance to settlement, and distance to open water were significant drivers. In Napahai, distance to nocturnal roost site, distance to open water, and distance to marsh were the most influential (all with p < 0.01), reflecting flexible behavioral responses. Based on these findings, we recommend region-specific conservation management strategies. Specifically, supplemental feeding at Nianhu should be strictly regulated. Agricultural planning in farming areas should account for the habitat needs of wintering waterbirds. Grassland and marsh habitats at Napahai should also be more effectively protected. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

15 pages, 2065 KB  
Article
Shifting of the Migration Route of White-Naped Crane (Antigone vipio) Due to Wetland Loss in China
by Yifei Jia, Yunzhu Liu, Shengwu Jiao, Jia Guo, Cai Lu, Yan Zhou, Yuyu Wang, Guangchun Lei, Li Wen and Xunqiang Mo
Remote Sens. 2021, 13(15), 2984; https://doi.org/10.3390/rs13152984 - 29 Jul 2021
Cited by 11 | Viewed by 4524
Abstract
In the last 15 years, the west population of white-naped crane (Antigone vipio) decreased dramatically despite the enhanced conservation actions in both breeding and wintering areas. Recent studies highlighted the importance of protecting the integrity of movement connectivity for migratory birds. [...] Read more.
In the last 15 years, the west population of white-naped crane (Antigone vipio) decreased dramatically despite the enhanced conservation actions in both breeding and wintering areas. Recent studies highlighted the importance of protecting the integrity of movement connectivity for migratory birds. Widespread and rapid landcover changes may exceed the adaptive capacity of migrants, leading to the collapse of migratory networks. In this study, using satellite tracking data, we modeled and characterized the migration routes of the white-naped crane at three spatial levels (core area, migratory corridor, and migratory path) based on the utilization distribution for two eras (1990s and 2010s) spanning 20 years. Our analysis demonstrated that the white-naped crane shifted its migratory route, which is supported by other lines of evidences. The widespread loss of wetlands, especially within the stopover sites, might have caused this behavioral adaptation. Moreover, our analysis indicated that the long-term sustainability of the new route is untested and likely to be questionable. Therefore, directing conservation effects to the new route might be insufficient for the long-term wellbeing of this threatened crane and large-scale wetland restorations in Bohai Bay, a critical stopover site in the East Asian-Australasian flyway, are of the utmost importance to the conservation of this species. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Migratory Birds Conservation)
Show Figures

Figure 1

16 pages, 651 KB  
Brief Report
MicroRNA-451 Inhibits Migration of Glioblastoma while Making It More Susceptible to Conventional Therapy
by Daisuke Ogawa, Khairul Ansari, Michal O. Nowicki, Elżbieta Salińska, Agnieszka Bronisz and Jakub Godlewski
Non-Coding RNA 2019, 5(1), 25; https://doi.org/10.3390/ncrna5010025 - 15 Mar 2019
Cited by 24 | Viewed by 4813
Abstract
Malignant glioblastoma (GBM, glioma) is the most common and aggressive primary adult brain tumor. The prognosis of GBM patients remains poor, despite surgery, radiation and chemotherapy. The major obstacles for successful remedy are invasiveness and therapy resistance of GBM cells. Invasive glioma cells [...] Read more.
Malignant glioblastoma (GBM, glioma) is the most common and aggressive primary adult brain tumor. The prognosis of GBM patients remains poor, despite surgery, radiation and chemotherapy. The major obstacles for successful remedy are invasiveness and therapy resistance of GBM cells. Invasive glioma cells leave primary tumor core and infiltrate surrounding normal brain leading to inevitable recurrence, even after surgical resection, radiation and chemotherapy. Therapy resistance allowing for selection of more aggressive and resistant sub-populations including GBM stem-like cells (GSCs) upon treatment is another serious impediment to successful treatment. Through their regulation of multiple genes, microRNAs can orchestrate complex programs of gene expression and act as master regulators of cellular processes. MicroRNA-based therapeutics could thus impact broad cellular programs, leading to inhibition of invasion and sensitization to radio/chemotherapy. Our data show that miR-451 attenuates glioma cell migration in vitro and invasion in vivo. In addition, we have found that miR-451 sensitizes glioma cells to conventional chemo- and radio-therapy. Our data also show that miR-451 is regulated in vivo by AMPK pathway and that AMPK/miR-451 loop has the ability to switch between proliferative and migratory pattern of glioma cells behavior. We therefore postulate that AMPK/miR-451 negative reciprocal feedback loop allows GBM cells/GSCs to adapt to tumor “ecosystem” by metabolic and behavioral flexibility, and that disruption of such a loop reduces invasiveness and diminishes therapy resistance. Full article
(This article belongs to the Special Issue Non-Coding RNA and Brain Tumors)
Show Figures

Figure 1

Back to TopTop