Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = micro direct methanol fuel cells (μDMFCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2330 KiB  
Review
Design and Fabrication of Micro-Electromechanical System (MEMS)-Based μ-DMFC (Direct Methanol Fuel Cells) for Portable Applications: An Outlook
by Divya Catherin Sesu, Ganesan Narendran, Saraswathi Ramakrishnan, Kumaran Vediappan, Sankaran Esakki Muthu, Sengottaiyan Shanmugan and Karthik Kannan
Electrochem 2025, 6(2), 11; https://doi.org/10.3390/electrochem6020011 - 30 Mar 2025
Cited by 2 | Viewed by 1962
Abstract
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques [...] Read more.
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques such as microfabrication, material selection for membranes and electrodes, and integration challenges in small-scale devices, in addition to issues like methanol crossover, low efficiency at high methanol concentrations, thermal management, and the cost of materials. The advancements in micro-DMFC stacks and prototype developments are presented, and the challenges relating to micro-DMFCs are also identified and reviewed in detail. The challenges in the development of micro-DMFC applications are also presented, including the need for a better understanding of the anode and cathode catalyst structure and for high catalyst loadings in oxidation-and-reduction reactions. Also, a comprehensive and highly valuable database for advancing innovations and enhancing the understanding of micro-DMFCs for potential applications is provided. Full article
Show Figures

Figure 1

9 pages, 2978 KiB  
Communication
Development of a Microwave Sensor for Real-Time Monitoring of a Micro Direct Methanol Fuel Cell
by Shubin Zhang, Tian Qiang and Yanfeng Jiang
Sensors 2024, 24(3), 969; https://doi.org/10.3390/s24030969 - 2 Feb 2024
Viewed by 1348
Abstract
Micro direct methanol fuel cells (μDMFCs) are a promising power source for microelectronic devices and systems. As the operating state and performance of a μDMFC is generally determined by both electrochemical polarization and methanol crossover, it is important to monitor the methanol concentration [...] Read more.
Micro direct methanol fuel cells (μDMFCs) are a promising power source for microelectronic devices and systems. As the operating state and performance of a μDMFC is generally determined by both electrochemical polarization and methanol crossover, it is important to monitor the methanol concentration in μDMFCs. Here, we design and fabricate a microwave sensor and integrate it with a μDMFC for the online detection of methanol concentration in a nonintrusive way. The sensing area is set at the bottom of the anode chamber of a μDMFC which exhibits a maximum output power density of 28.8 mW cm−2 at 30 °C. With a square ring structure, the dual-mode microwave sensor shows a sensitivity of 9.5 MHz mol−1 L. Furthermore, the importance of methanol concentration monitoring is demonstrated in the long term. A relatively smooth methanol decline curve was obtained, which indicated a normal and stable operating status of the μDMFC. Derived from real-time recording data, fuel utilization was additionally calculated as 28.5%. Full article
(This article belongs to the Special Issue Techniques and Instrumentation for Microwave Sensing)
Show Figures

Figure 1

13 pages, 1378 KiB  
Article
Reduced Graphene Oxide/Carbon Paper for the Anode Diffusion Layer of a Micro Direct Methanol Fuel Cell
by Dacheng Zhang, Kang Li, Ziten Wang and Zhengang Zhao
Nanomaterials 2022, 12(17), 2941; https://doi.org/10.3390/nano12172941 - 26 Aug 2022
Cited by 2 | Viewed by 1957
Abstract
The diffusion layer (DL) in the structure of the membrane electrode assembly (MEA) of a micro direct methanol fuel cell (μDMFC) plays an essential role in reactant/product mass transfer and catalyst loading. The material selection and structure design of the μ [...] Read more.
The diffusion layer (DL) in the structure of the membrane electrode assembly (MEA) of a micro direct methanol fuel cell (μDMFC) plays an essential role in reactant/product mass transfer and catalyst loading. The material selection and structure design of the μDMFC affects its performance. In this work, a reduced graphene oxide/carbon paper (rGO/CP) was proposed and prepared for the anode DL of a μDMFC. It was prepared using electrophoretic sedimentation combined with an in situ reduction method. The rGO/CP reduced the cell’s ohmic and charge transfer resistances. Meanwhile, it provided more significant mass transfer resistance to reduce the methanol crossover, allowing the cell to operate stably at higher concentrations for a longer duration than conventional μDMFCs. The experimental results showed that the maximum power density increased by 53% compared with the traditional anode DL of carbon paper. Full article
Show Figures

Figure 1

15 pages, 1320 KiB  
Article
Internal Characterization-Based Prognostics for Micro-Direct-Methanol Fuel Cells under Dynamic Operating Conditions
by Dacheng Zhang, Xinru Li, Wei Wang and Zhengang Zhao
Sensors 2022, 22(11), 4217; https://doi.org/10.3390/s22114217 - 1 Jun 2022
Cited by 1 | Viewed by 2093
Abstract
Micro-direct-methanol fuel cells (μDMFCs) use micro-electro mechanical system (MEMS) technology, which offers high energy density, portable use, quick replenishment, and free fuel reforming and purification. However, the μDMFC is limited by a short effective service life due to the membrane [...] Read more.
Micro-direct-methanol fuel cells (μDMFCs) use micro-electro mechanical system (MEMS) technology, which offers high energy density, portable use, quick replenishment, and free fuel reforming and purification. However, the μDMFC is limited by a short effective service life due to the membrane electrode’s deterioration in electrochemical reactions. This paper presents a health status assessment and remaining useful life (RUL) prediction approach for μDMFC under dynamic operating conditions. Rather than making external observations, an internal characterization is used to describe the degradation indicator and to overcome intrusive influences in operation. Then, a Markov-process-based usage behavior prediction mechanism is proposed to account for the randomness of real-world operation. The experimental results show that the proposed degradation indicator alleviates the reduction in μDMFC output power degradation behavior caused by the user loading profile. Compared with the predictions of RUL using traditional external observation, the proposed approach achieved superior prognostic performance in both accuracy and precision. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 9253 KiB  
Article
Water Management for μDMFC with Foamed Stainless Steel Cathode Current Collector
by Fan Zhang, Yanhui Zhang and Zhengang Zhao
Nanomaterials 2022, 12(6), 948; https://doi.org/10.3390/nano12060948 - 14 Mar 2022
Cited by 5 | Viewed by 2627
Abstract
For micro direct methanol fuel cell (μDMFC), water flooding on the cathode seriously affects the performance stability. Additionally, the effect of material and wettability of the cathode current collector (CCC) on the drainage capacity is studied to improve the μDMFC’s [...] Read more.
For micro direct methanol fuel cell (μDMFC), water flooding on the cathode seriously affects the performance stability. Additionally, the effect of material and wettability of the cathode current collector (CCC) on the drainage capacity is studied to improve the μDMFC’s performance. To this end, a CCC with foamed stainless steel was prepared to assemble the μDMFC due to its absorbency. Further, based on analyzing the gas–liquid two-phase flow characteristics of the μDMFC cathode, it was found that the gradient wettability CCC could accelerate the discharge of cathode water. Hence, the foam stainless steel CCC was partially immersed in a KOH solution to complete the gradient corrosion using its capillary force. Then, four different types of gradient wettability CCC were prepared by controlling the time of chemical corrosion. Finally, the performance of the μDMFC with different gradient wettability CCC was tested at room temperature using electrochemical impedance spectroscopy (EIS) and discharge voltage. The experimental results show that the gradient wettability CCC can improve the performance of the μDMFC by slowing down the rate of cathode flooding. The optimum corrosion time is 5 min at a concentration of 1 mol/L. Under these conditions, the CCC has the best gradient wettability, and the μDMFC has the lowest total impedance. The discharge voltage of the μDMFC with corroded CCC is increased by 33.33% compared to the uncorroded CCC μDMFC. The gradient wettability CCC designed in this study is economical, convenient, and practical for water management of the μDMFC. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Figure 1

13 pages, 6099 KiB  
Article
Performance Optimization of μDMFC with Foamed Stainless Steel Cathode Current Collector
by Zhengang Zhao, Fan Zhang, Yanhui Zhang and Dacheng Zhang
Energies 2021, 14(20), 6608; https://doi.org/10.3390/en14206608 - 13 Oct 2021
Cited by 6 | Viewed by 2058
Abstract
The micro direct methanol fuel cell (μDMFC) has attracted more and more attention in the field of new energy due to its simple structure, easy operation, and eco-friendly byproducts. In a μDMFC’s structure, the current collector plays an essential role [...] Read more.
The micro direct methanol fuel cell (μDMFC) has attracted more and more attention in the field of new energy due to its simple structure, easy operation, and eco-friendly byproducts. In a μDMFC’s structure, the current collector plays an essential role in collecting the conduction current, and the rational distribution of gas and water. The choice of its material and flow fields would significantly impact the μDMFC’s performance. To this end, four different types of cathode current collector were prepared in this study. The materials selected were stainless steel (SS) and foam stainless steel (FSS), with the flow fields of hole-type and grid-type. The performance of the μDMFC with different types of cathode current collector was investigated by using polarization curves, electrochemical impedance spectroscopy (EIS), and discharging. The experimental results show that the maximum power density of μDMFC of the hole-type FSS cathode current collector is 49.53 mW/cm2 at 70 °C in the methanol solution of 1 mol/L, which is 115.72% higher than that of the SS collector. The maximum power density of the μDMFC with the grid-type FSS collector is 22.60 mW/cm2, which is 27.39% higher than that of the SS collector. The total impedance of the μDMFC of the FSS collector is significantly lower than that of the μDMFC of the SS collector, and the total impedance of the μDMFC with the hole-type flow field collector is lower than that of the grid-type flow field. The discharging of μDMFC with the hole-type FSS collector reaches its optimal value at 70 °C in the methanol solution of 1 mol/L. Full article
Show Figures

Figure 1

11 pages, 2885 KiB  
Article
A Trilaminar-Catalytic Layered MEA Structure for a Passive Micro-Direct Methanol Fuel Cell
by Huichao Deng, Jiaxu Zhou and Yufeng Zhang
Micromachines 2021, 12(4), 381; https://doi.org/10.3390/mi12040381 - 1 Apr 2021
Cited by 6 | Viewed by 2646
Abstract
A membrane electrode assembly (MEA) with a novel trilaminar-catalytic layered structure was designed and fabricated for a micro-direct methanol fuel cell (μ-DMFC). The trilaminar-catalytic layer comprises three porous layers. The medial layer has a lower porosity than the inner and outer layers. The [...] Read more.
A membrane electrode assembly (MEA) with a novel trilaminar-catalytic layered structure was designed and fabricated for a micro-direct methanol fuel cell (μ-DMFC). The trilaminar-catalytic layer comprises three porous layers. The medial layer has a lower porosity than the inner and outer layers. The simulation results predicted a lower water content and a higher oxygen concentration in the trilaminar-catalytic layer. The novel trilaminar-catalytic layer enhanced the back diffusion of water from the cathode to the anode, which reduces methanol crossover and improves oxygen mass transportation. The electrochemical results of the half-cell test indicate that the novel MEA has a greatly increased cathode polarization and a slightly increased anode polarization. Thus, this novel μ-DMFC structure has a higher power density and a longer discharging time, and hence may be used in portable systems. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flow in Micromachines)
Show Figures

Figure 1

12 pages, 4036 KiB  
Article
Micro Direct Methanol Fuel Cell Based on Reduced Graphene Oxide Composite Electrode
by Chaoran Liu, Sanshan Hu, Lu Yin, Wenli Yang, Juan Yu, Yumin Xu, Lili Li, Gaofeng Wang and Luwen Wang
Micromachines 2021, 12(1), 72; https://doi.org/10.3390/mi12010072 - 11 Jan 2021
Cited by 5 | Viewed by 3026
Abstract
The effect of an anode composite electrode on the performance of a micro direct methanol fuel cell (μDMFC) is analyzed from sample preparation configurations and discussed in detail, with a specific focus on the catalyst layer and the micro-porous layer on the anode [...] Read more.
The effect of an anode composite electrode on the performance of a micro direct methanol fuel cell (μDMFC) is analyzed from sample preparation configurations and discussed in detail, with a specific focus on the catalyst layer and the micro-porous layer on the anode composite electrode. This study investigates the effects of Pt content, Pt-Ru molar ratio, Nafion content, catalyst support, and preparation method in the catalyst layer, along with the carbon loading and polytetrafluoroethylene (PTFE) content in the micro-porous layer, on the performance of the anode composite electrode. The results show that the anode composite electrode delivers the best performance with 30% Pt content, a 1:1.5 Pt-Ru molar ratio, 10% Nafion content on reduced graphene oxide as the catalyst support. The synthesis is optimized with the impregnation reduction method using NaBH4 as the reducing agent, with the addition of 1.5 mg/cm2 carbon loading and 5% PTFE. Full article
Show Figures

Figure 1

11 pages, 6537 KiB  
Article
A Novel Button-Type Micro Direct Methanol Fuel Cell with Graphene Diffusion Layer
by Yingli Zhu, Lei Gao and Jianyu Li
Micromachines 2019, 10(10), 658; https://doi.org/10.3390/mi10100658 - 29 Sep 2019
Cited by 9 | Viewed by 2848
Abstract
In order to solve the problem that bolts in traditional packaged direct methanol fuel cells (DMFCs) take up a large area and reduce the specific energy (energy per unit weight) and power density (power per unit area), a new button-type micro direct methanol [...] Read more.
In order to solve the problem that bolts in traditional packaged direct methanol fuel cells (DMFCs) take up a large area and reduce the specific energy (energy per unit weight) and power density (power per unit area), a new button-type micro direct methanol fuel cell (B-μDMFC) is designed, assembled, and packaged. The cell with four different structures was tested before and after packaging. The results indicate that the button cell with three-dimensional graphene and springs has the best performance. The equivalent circuit and methanol diffusion model was applied to explain the experimental results. The peak volumetric specific power density of the cell is 11.85 mW cm−3. This is much higher than traditional packaged DMFC, because the novel B-μDMFC eliminates bolts in the structure and improves the effective area ratio of the cell. Full article
Show Figures

Figure 1

12 pages, 5275 KiB  
Article
The Self-Adaptive Fuel Supply Mechanism in Micro DMFC Based on the Microvalve
by Zhenyu Yuan, Wenhui Chuai, Zhongming Guo, Zhaoyin Tu and Fanbo Kong
Micromachines 2019, 10(6), 353; https://doi.org/10.3390/mi10060353 - 29 May 2019
Cited by 5 | Viewed by 2513
Abstract
To achieve a self-adaptive fuel supply mechanism for the micro direct methanol fuel cell (μDMFC), we designed and developed a thermal control microvalve channel structure, where we considered the relationship between the temperature characteristics, viscosity, and velocity of the methanol solution. Both the [...] Read more.
To achieve a self-adaptive fuel supply mechanism for the micro direct methanol fuel cell (μDMFC), we designed and developed a thermal control microvalve channel structure, where we considered the relationship between the temperature characteristics, viscosity, and velocity of the methanol solution. Both the single channel model and three-dimensional cell model for the microvalve were established using the COMSOL Multiphysics program. The results demonstrated that in the microvalve channel, the viscosity of the solution decreased, and the flow rate at the microvalve outlet increased with the increasing temperature. Meanwhile, the geometry structure of the microvalve single channel was optimized, so that the effect of the control speed of the microvalve under temperature changes became more prominent. In the full-cell model analysis, a low-velocity methanol solution at the low current density can significantly inhibit methanol crossover. At the high current densities, an increase in the methanol solution flow rate was beneficial to an increase in the cell reaction output. The μDMFC was fabricated and the experiment was conducted, where the results showed that the power density of the self-adaptive cell reached a maximum value of 16.56 mW/cm2 in 2 M methanol solution, which was up to 7% better than conventional cell performance. The proposed microvalve structure can effectively improve the output power of the μDMFC during the whole reaction process, and it may improve the stability of the cell operation. Full article
Show Figures

Figure 1

9 pages, 1896 KiB  
Article
Structure Design and Implementation of the Passive μ-DMFC
by Xiaowei Liu, Shuo Fang, Zezhong Ma and Yufeng Zhang
Micromachines 2015, 6(2), 230-238; https://doi.org/10.3390/mi6020230 - 4 Feb 2015
Cited by 4 | Viewed by 6236
Abstract
A dual-chamber anode structure is proposed in order to solve two performance problems of the conventional passive micro direct methanol fuel cell (μ-DMFC). One of the problems is the unstable performance during long time discharge. The second problem is the short operating time. [...] Read more.
A dual-chamber anode structure is proposed in order to solve two performance problems of the conventional passive micro direct methanol fuel cell (μ-DMFC). One of the problems is the unstable performance during long time discharge. The second problem is the short operating time. In this structure, low concentration chamber is filled with methanol solution with appropriate concentration for the μ-DMFC. Pure methanol in high concentration chamber diffuses to the low concentration chamber to keep the concentration of methanol solution suitable for long-term discharge of μ-DMFC. In this study, a Nafion-Polytetrafluoroethylene (PTFE) composite membrane is inserted between the two chambers to conduct pure methanol. The experimental results during long-term discharge show that the stable operating time of passive μ-DMFC increases by nearly 2.3 times compared to a conventional one with the same volume. These results could be applied to real products. Full article
(This article belongs to the Special Issue Power MEMS)
Show Figures

Figure 1

11 pages, 556 KiB  
Article
Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC
by Miaomiao Li, Junsheng Liang, Chong Liu, Gongquan Sun and Gang Zhao
Sensors 2009, 9(5), 3314-3324; https://doi.org/10.3390/s90503314 - 6 May 2009
Cited by 25 | Viewed by 10928
Abstract
Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure usingthe concept of the non-equipotent serpentine flow field (NESFF [...] Read more.
Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure usingthe concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO2 bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the µDMFC anode flow field can effectively mitigate the CO2 clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance. Full article
Show Figures

Back to TopTop