Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = micro/nano-optics biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3010 KB  
Review
Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review
by Saeed Takaloo, Alexander H. Xu, Liena Zaidan, Mehrdad Irannejad and Mustafa Yavuz
Biosensors 2024, 14(12), 593; https://doi.org/10.3390/bios14120593 - 4 Dec 2024
Cited by 5 | Viewed by 4371
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but [...] Read more.
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

34 pages, 7460 KB  
Review
Evolution in Lithography Techniques: Microlithography to Nanolithography
by Ekta Sharma, Reena Rathi, Jaya Misharwal, Bhavya Sinhmar, Suman Kumari, Jasvir Dalal and Anand Kumar
Nanomaterials 2022, 12(16), 2754; https://doi.org/10.3390/nano12162754 - 11 Aug 2022
Cited by 187 | Viewed by 24768
Abstract
In this era, electronic devices such as mobile phones, computers, laptops, sensors, and many more have become a necessity in healthcare, for a pleasant lifestyle, and for carrying out tasks quickly and easily. Different types of temperature sensors, biosensors, photosensors, etc., have been [...] Read more.
In this era, electronic devices such as mobile phones, computers, laptops, sensors, and many more have become a necessity in healthcare, for a pleasant lifestyle, and for carrying out tasks quickly and easily. Different types of temperature sensors, biosensors, photosensors, etc., have been developed to meet the necessities of people. All these devices have chips inside them fabricated using diodes, transistors, logic gates, and ICs. The patterning of the substrate which is used for the further development of these devices is done with the help of a technique known as lithography. In the present work, we have carried out a review on different types of lithographic techniques such as optical lithography, extreme ultraviolet lithography, electron beam lithography, X-ray lithography, and ion beam lithography. The evolution of these techniques with time and their application in device fabrication are discussed. The different exposure tools developed in the past decade to enhance the resolution of these devices are also discussed. Chemically amplified and non-chemically amplified resists with their bonding and thickness are discussed. Mask and maskless lithography techniques are discussed along with their merits and demerits. Device fabrication at micro and nano scale has been discussed. Advancements that can be made to improve the performance of these techniques are also suggested. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

14 pages, 3603 KB  
Article
Multimode Fano Resonances Sensing Based on a Non-Through MIM Waveguide with a Square Split-Ring Resonance Cavity
by Jianfeng Chen, Xinyu Lian, Ming Zhao and Chenbo Xie
Biosensors 2022, 12(5), 306; https://doi.org/10.3390/bios12050306 - 6 May 2022
Cited by 28 | Viewed by 4039
Abstract
In this article, a non-through metal–insulator–metal (MIM) waveguide that can excite fivefold Fano resonances is reported. The Fano resonances are obtained by the interaction between the modes excited by the square split-ring resonator (SSRC) and the bus waveguide. After a detailed analysis of [...] Read more.
In this article, a non-through metal–insulator–metal (MIM) waveguide that can excite fivefold Fano resonances is reported. The Fano resonances are obtained by the interaction between the modes excited by the square split-ring resonator (SSRC) and the bus waveguide. After a detailed analysis of the transmission characteristics and magnetic field strength of the structure using the finite element method (FEM), it was found that the independent tuning of Fano resonance wavelength and transmittance can be achieved by adjusting the geometric parameters of SSRC. In addition, after optimizing the geometric parameters, the refractive index sensing sensitivity (S) and figure of merit (FOM) of the structure can be optimal, which are 1290.2 nm/RIU and 3.6 × 104, respectively. Additionally, the annular cavity of the MIM waveguide structure can also be filled with biomass solution to act as a biosensor. On this basis, the structure can be produced for optical refractive index sensing in the biological, micro and nano fields. Full article
(This article belongs to the Special Issue Waveguide Biosensors)
Show Figures

Figure 1

35 pages, 3606 KB  
Review
A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors
by Varnakavi. Naresh and Nohyun Lee
Sensors 2021, 21(4), 1109; https://doi.org/10.3390/s21041109 - 5 Feb 2021
Cited by 1531 | Viewed by 100446
Abstract
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor [...] Read more.
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology. Full article
(This article belongs to the Special Issue Advances of Nanotechnologies in Biosensing and Bioimaging)
Show Figures

Figure 1

12 pages, 5261 KB  
Article
Novel Wet Micro-Contact Deprinting Method for Patterning Gold Nanoparticles on PEG-Hydrogels and Thereby Controlling Cell Adhesion
by Cigdem Yesildag, Christoph Bartsch, Gonzalo De Vicente and Marga C. Lensen
Polymers 2017, 9(5), 176; https://doi.org/10.3390/polym9050176 - 15 May 2017
Cited by 4 | Viewed by 8728
Abstract
In the present work we introduce a novel method to create linear and rectangular micro-patterns of gold nanoparticles (Au NPs) on poly(ethylene glycol) (PEG) hydrogels. The strategy consists of removing Au NPs from defined regions of the silicon wafer by virtue of the [...] Read more.
In the present work we introduce a novel method to create linear and rectangular micro-patterns of gold nanoparticles (Au NPs) on poly(ethylene glycol) (PEG) hydrogels. The strategy consists of removing Au NPs from defined regions of the silicon wafer by virtue of the swelling effect of the hydrogel. Using this method, which we denote as “Wet Micro-Contact Deprinting”, well-defined micro-patterns of Au NPs on silicon can be created. This resulting pattern is then transferred from the hard substrate to the soft surface of PEG-hydrogels. These unique micro- and nano-patterned hydrogels were cultured with mouse fibroblasts L929 cells. The cells selectively adhered on the Au NPs coated area and avoided the pure PEG material. These patterned, nanocomposite biointerfaces are not only useful for biological and biomedical applications, such as tissue engineering and diagnostics, but also, for biosensor applications taking advantage of surface plasmon resonance (SPR) or surface enhanced Raman scattering (SERS) effects, due to the optical properties of the Au NPs. Full article
(This article belongs to the Special Issue Bio-inspired and Bio-based Polymers)
Show Figures

Graphical abstract

71 pages, 3321 KB  
Review
Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review
by Jem-Kun Chen and Chi-Jung Chang
Materials 2014, 7(2), 805-875; https://doi.org/10.3390/ma7020805 - 28 Jan 2014
Cited by 167 | Viewed by 21908
Abstract
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, [...] Read more.
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing) were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles), switchable wettability, sensors (optical sensors, biosensors, chemical sensors), and actuators. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Back to TopTop