Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = metarubricytosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 185 KB  
Brief Report
European EHBP1L1 Genotyping Survey of Dyserythropoietic Anemia and Myopathy Syndrome in English Springer Spaniels
by Sarah Østergård Jensen, Alexandra Kehl and Urs Giger
Vet. Sci. 2024, 11(12), 596; https://doi.org/10.3390/vetsci11120596 - 26 Nov 2024
Viewed by 2057
Abstract
Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an EHBP1L1 frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for [...] Read more.
Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an EHBP1L1 frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts. Lack of EHBP1L1 function decreases enucleation, leading to increased numbers of nucleated erythrocytes, which are characteristic of DAMS. A genotyping survey for the EHBP1L1 variant was conducted based upon submitted samples of ESSPs from Europe. DNA was extracted, and a real-time PCR assay, with allele-specific TaqMan probes for EHBP1L1 wild-type and frameshift deletion, was applied. Between September 2022 and August 2024, 803 samples were received from 18 European countries. The EHBP1L1 mutant allele frequency was 9.7%, including 4 homozygous dogs and 148 heterozygotes. The mutant EHBP1L1 allele was found in 13 countries. A total of 6 homozygous and 73 heterozygous ESSPs reported on an open database could be tracked to an original common ancestor. Although the survey is biased, it indicates that the mutant EHBP1L1 variant is disseminated in the breed and across Europe. The genotyping of ESSPs is recommended to diagnose DAMS and guide breeders. Full article
(This article belongs to the Section Veterinary Internal Medicine)
20 pages, 1593 KB  
Article
Validation of the Sysmex XN-V Automated Nucleated Red Blood Cell Enumeration for Canine and Feline EDTA-Anticoagulated Blood
by Julia Ginders, Martina Stirn, Marilisa Novacco, Regina Hofmann-Lehmann and Barbara Riond
Animals 2024, 14(3), 455; https://doi.org/10.3390/ani14030455 - 30 Jan 2024
Cited by 5 | Viewed by 4479
Abstract
The enumeration of nRBCs (nucleated red blood cells) by manual counting is time-consuming and imprecise. As the first veterinary hematology analyzer, Sysmex XN-V provides automated nRBC counts. This study aimed to evaluate the performance of Sysmex XN-V in the enumeration of nRBCs for [...] Read more.
The enumeration of nRBCs (nucleated red blood cells) by manual counting is time-consuming and imprecise. As the first veterinary hematology analyzer, Sysmex XN-V provides automated nRBC counts. This study aimed to evaluate the performance of Sysmex XN-V in the enumeration of nRBCs for cats and dogs by comparing automated nRBC counts to manual counts from a total of 3810 canine and 2844 feline specimens. Repeatability, reproducibility, stability, carry-over, and linearity were assessed. The repeatability and reproducibility of Sysmex XN-V were good, with mean coefficients of variation (CV) of 4.5% and 5.4%, respectively. Bland–Altman difference analysis revealed mean biases shown as nRBCs/100 WBCs of 0.01 in dogs and 0.11 in cats with low nRBCs (<5/100 WBCs), mean biases of −1.27 in dogs and −0.24 in cats with moderate nRBC counts (5–20 nRBCs/100 WBCs), and mean biases of −7.76 in dogs and −1.31 in cats with high nRBC counts (>20 nRBCs/100 WBCs). The total observable error was below 9% in both species and at all ranges. Overall concordance between methods was high (91% in canine and 93% in feline samples). The automated nRBC count by Sysmex XN-V was found to be accurate and precise and can replace manual counts for cat and dog samples. Non-statistical quality assurance by scattergram evaluation, re-gating, and confirmation by blood smear evaluation is, however, recommended, especially in cases with severe normoblastosis. This advancement will save time, reduce errors, and add prognostic value to hematological results for animal patients. Full article
(This article belongs to the Special Issue Advances in Companion Animal Clinical Pathology)
Show Figures

Figure 1

20 pages, 3139 KB  
Article
EHBP1L1 Frameshift Deletion in English Springer Spaniel Dogs with Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) or Neonatal Losses
by Sarah Østergård Jensen, Matthias Christen, Veronica Rondahl, Christopher T. Holland, Vidhya Jagannathan, Tosso Leeb and Urs Giger
Genes 2022, 13(9), 1533; https://doi.org/10.3390/genes13091533 - 26 Aug 2022
Cited by 3 | Viewed by 6115
Abstract
Hereditary myopathies are well documented in dogs, whereas hereditary dyserythropoietic anemias are rarely seen. The aim of this study was to further characterize the clinical and clinicopathological features of and to identify the causative genetic variant for a dyserythropoietic anemia and myopathy syndrome [...] Read more.
Hereditary myopathies are well documented in dogs, whereas hereditary dyserythropoietic anemias are rarely seen. The aim of this study was to further characterize the clinical and clinicopathological features of and to identify the causative genetic variant for a dyserythropoietic anemia and myopathy syndrome (DAMS) in English springer spaniel dogs (ESSPs). Twenty-six ESSPs, including five dogs with DAMS and two puppies that died perinatally, were studied. Progressive weakness, muscle atrophy—particularly of the temporal and pelvic muscles—trismus, dysphagia, and regurgitation due to megaesophagus were observed at all ages. Affected dogs had a non-regenerative, microcytic hypochromic anemia with metarubricytosis, target cells, and acanthocytes. Marked erythroid hyperplasia and dyserythropoiesis with non-orderly maturation of erythrocytes and inappropriate microcytic metarubricytosis were present. Muscle biopsies showed centralized nuclei, central pallor, lipocyte infiltrates, and fibrosis, which was consistent with centronuclear myopathy. The genome sequencing of two affected dogs was compared to 782 genomes of different canine breeds. A homozygous frameshift single-base deletion in EHBP1L1 was identified; this gene was not previously associated with DAMS. Pedigree analysis confirmed that the affected ESSPs were related. Variant genotyping showed appropriate complete segregation in the family, which was consistent with an autosomal recessive mode of inheritance. This study expands the known genotype–phenotype correlation of EHBP1L1 and the list of potential causative genes in dyserythropoietic anemias and myopathies in humans. EHBP1L1 deficiency was previously reported as perinatally lethal in humans and knockout mice. Our findings enable the genetic testing of ESSP dogs for early diagnosis and disease prevention through targeted breeding strategies. Full article
(This article belongs to the Special Issue Advances in Canine Genetics)
Show Figures

Figure 1

7 pages, 1864 KB  
Article
An EHPB1L1 Nonsense Mutation Associated with Congenital Dyserythropoietic Anemia and Polymyopathy in Labrador Retriever Littermates
by G. Diane Shelton, Katie M. Minor, Ling T. Guo, Alison Thomas-Hollands, Koranda A. Walsh, Steven G. Friedenberg, Jonah N. Cullen and James R. Mickelson
Genes 2022, 13(8), 1427; https://doi.org/10.3390/genes13081427 - 11 Aug 2022
Cited by 5 | Viewed by 2645
Abstract
In this report, we describe a novel genetic basis for congenital dyserythropoietic anemia and polymyopathy in Labrador Retriever littermates characterized by incidental detection of marked microcytosis, inappropriate metarubricytosis, pelvic limb weakness and muscle atrophy. A similar syndrome has been described in English Springer [...] Read more.
In this report, we describe a novel genetic basis for congenital dyserythropoietic anemia and polymyopathy in Labrador Retriever littermates characterized by incidental detection of marked microcytosis, inappropriate metarubricytosis, pelvic limb weakness and muscle atrophy. A similar syndrome has been described in English Springer Spaniel littermates with an early onset of anemia, megaesophagus, generalized muscle atrophy and cardiomyopathy. Muscle histopathology in both breeds showed distinctive pathological changes consistent with congenital polymyopathy. Using whole genome sequencing and mapping to the CanFam4 (Canis lupus familiaris reference assembly 4), a nonsense variant in the EHBP1L1 gene was identified in a homozygous form in the Labrador Retriever littermates. The mutation produces a premature stop codon that deletes approximately 90% of the protein. This variant was not present in the English Springer Spaniels. Currently, EHPB1L1 is described as critical to actin cytoskeletal organization and apical-directed transport in polarized epithelial cells, and through connections with Rab8 and a BIN1-dynamin complex generates membrane vesicles in the endocytic recycling compartment. Furthermore, EHBP1L1 knockout mice die early and develop severe anemia. The connection of EHBP1L1 to BIN1 and DMN2 functions is particularly interesting due to BIN1 and DMN2 mutations being causative in forms of centronuclear myopathy. This report, along with an independent study conducted by another group, are the first reports of an association of EHBP1L1 mutations with congenital dyserythropoietic anemia and polymyopathy. Full article
(This article belongs to the Special Issue Advances in Canine Genetics)
Show Figures

Figure 1

Back to TopTop