Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = metal foil pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2829 KiB  
Article
Apparatus and Experiments Towards Fully Automated Medical Isotope Production Using an Ion Beam Accelerator
by Abdulaziz Yahya M. Hussain, Aliaksandr Baidak, Ananya Choudhury, Andy Smith, Carl Andrews, Eliza Wojcik, Liam Brown, Matthew Nancekievill, Samir De Moraes Shubeita, Tim A. D. Smith, Volkan Yasakci and Frederick Currell
Instruments 2025, 9(3), 18; https://doi.org/10.3390/instruments9030018 - 18 Jul 2025
Viewed by 261
Abstract
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated [...] Read more.
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated system for the agile and reliable production of radiopharmaceuticals. The system performs transmutations, dissolution, and separation for a range of radioisotopes. Steps in the production of 89Zr-oxalate are used as an exemplar to illustrate its use. Three-dimensional (3D) printing was exploited to design and manufacture a target holder able to include solid targets, in this case an 89Y foil. Spot welding was used to attach 89Y to a refractory tantalum (Ta) substrate. A commercially available CPU chiller was repurposed to efficiently cool the metal target. Furthermore, a commercial resin (ZR Resin) and compact peristaltic pumps were employed in a compact (10 × 10 × 10 cm3) chemical separation unit that operates automatically via computer-controlled software. Additionally, a standalone 3D-printed unit was designed with three automated functionalities: photolabelling, vortex mixing, and controlled heating. All components of the assembly, except for the target holder, are housed inside a commercially available hot cell, ensuring safe and efficient operation in a controlled environment. This paper details the design, construction, and modelling of the entire assembly, emphasising its innovative integration and operational efficiency for widespread radiopharmaceutical automation. Full article
Show Figures

Figure 1

12 pages, 8432 KiB  
Article
Assessment of Metal Foil Pump Configurations for EU-DEMO
by Xueli Luo, Yannick Kathage, Tim Teichmann, Stefan Hanke, Thomas Giegerich and Christian Day
Energies 2024, 17(16), 3889; https://doi.org/10.3390/en17163889 - 7 Aug 2024
Viewed by 1266
Abstract
It is a challenging but key task to reduce the tritium inventory in EU-DEMO to levels that are acceptable for a nuclear regulator. As solution to this issue, a smart fuel cycle architecture is proposed based on the concept of Direct Internal Recycling [...] Read more.
It is a challenging but key task to reduce the tritium inventory in EU-DEMO to levels that are acceptable for a nuclear regulator. As solution to this issue, a smart fuel cycle architecture is proposed based on the concept of Direct Internal Recycling (DIR), in which the Metal Foil Pump (MFP) will play an important role to separate the unburnt hydrogen isotopes coming from the divertor by exploiting the superpermeation phenomenon. In this study, we will present the assessment of the performance of the lower port of EU-DEMO after the integration of the MFP. For the first time, a thorough comparison of three different MFP (parallel long tubes, sandwich and halo) designs is performed regarding conductance for helium molecules, the pumping speed and the separation factor for deuterium molecules under different physical and geometric parameters. All simulations were carried out in supercomputer Marconi-Fusion with our in-house Test Particle Monte Carlo (TPMC) simulation code ProVac3D because the code had been parallelized with high efficiency. These results are essential for the development of a suitable MFP design in the vacuum-pumping train of EU-DEMO. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
Show Figures

Figure 1

21 pages, 13047 KiB  
Article
Experimental Progress in the Development of a Metal Foil Pump for DEMO
by Yannick Kathage, Alejandro Vazquez Cortes, Stefan Merli, Christian Day, Thomas Giegerich, Stefan Hanke, Juri Igitkhanov, Andreas Schulz and Matthias Walker
Plasma 2023, 6(4), 714-734; https://doi.org/10.3390/plasma6040049 - 28 Nov 2023
Cited by 6 | Viewed by 2952
Abstract
Experimental findings to contribute to the preliminary design of a metal foil pump for fuel separation in the Direct Internal Recycling loop of the DEMO fusion device are presented. In parametric studies on a small-scale superpermeation experiment with a microwave plasma source and [...] Read more.
Experimental findings to contribute to the preliminary design of a metal foil pump for fuel separation in the Direct Internal Recycling loop of the DEMO fusion device are presented. In parametric studies on a small-scale superpermeation experiment with a microwave plasma source and two different metal foil materials, niobium Nb and vanadium V, a substantial increase in permeation with plasma power and with a decrease in pressure was observed. To ease operation in the typical fusion environment, in-situ heating procedures were developed to recover from impurity contamination. The temperature independence of plasma-driven permeation from 600 to 900 °C metal foil temperature was demonstrated. No proof of an isotopic effect for plasma-driven permeation of protium and deuterium could be found. The highest repeatable permeation flux achieved was 6.7 Pa∙m3/(m2∙s) or ~5.5 × 10−3 mol H/(m2∙s). The found compression ratios do safely allow the operation of the metal foil pump using ejector pumps as backing stages for the permeate. In a dedicated experimental setup, the operation of the plasma source in a strong magnetic field was tested. Parametric studies of pressure, power input, magnetic flux density, field gradient and field angle are presented. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Graphical abstract

21 pages, 20415 KiB  
Article
Copper-Arsenic Nanoparticles in Hematite: Fingerprinting Fluid-Mineral Interaction
by Max R. Verdugo-Ihl, Cristiana L. Ciobanu, Ashley Slattery, Nigel J. Cook, Kathy Ehrig and Liam Courtney-Davies
Minerals 2019, 9(7), 388; https://doi.org/10.3390/min9070388 - 27 Jun 2019
Cited by 14 | Viewed by 4833
Abstract
Metal nanoparticles (NP) in minerals are an emerging field of research. Development of advanced analytical techniques such as Z-contrast imaging and mapping using high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) allows unparalleled insights at the nanoscale. Moreover, the technique provides [...] Read more.
Metal nanoparticles (NP) in minerals are an emerging field of research. Development of advanced analytical techniques such as Z-contrast imaging and mapping using high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) allows unparalleled insights at the nanoscale. Moreover, the technique provides a link between micron-scale textures and chemical patterns if the sample is extracted in situ from a location of petrogenetic interest. Here we use HAADF STEM imaging and energy-dispersive X-ray spectrometry (EDX) mapping/spot analysis on focused ion beam prepared foils to characterise atypical Cu-As-zoned and weave-twinned hematite from the Olympic Dam deposit, South Australia. We aim to determine the role of solid-solution versus the presence of discrete included NPs in the observed zoning and to understand Cu-As-enrichment processes. Relative to the grain surface, the Cu-As bands extend in depth as (sub)vertical trails of opposite orientation, with Si-bearing hematite NP inclusions on one side and coarser cavities (up to hundreds of nm) on the other. The latter host Cu and Cu-As NPs, contain mappable K, Cl, and C, and display internal voids with rounded morphologies. Aside from STEM-EDX mapping, the agglomeration of native copper NPs was also assessed by high-resolution imaging. Collectively, such characteristics, corroborated with the geometrical outlines and negative crystal shapes of the cavities, infer that these are opened fluid inclusions with NPs attached to inclusion walls. Hematite along the trails features distinct nanoscale domains with lattice defects (twins, 2-fold superstructuring) relative to hematite outside the trails, indicating this is a nanoprecipitate formed during replacement processes, i.e., coupled dissolution and reprecipitation reactions (CDRR). Transient porosity intrinsically developed during CDRR can trap fluids and metals. Needle-shaped and platelet Cu-As NPs are also observed along (sub)horizontal bands along which Si, Al and K is traceable along the margins. The same signature is depicted along nm-wide planes crosscutting at 60° and offsetting (012)-twins in weave-twinned hematite. High-resolution imaging shows linear and planar defects, kink deformation along the twin planes, misorientation and lattice dilation around duplexes of Si-Al-K-planes. Such defects are evidence of strain, induced during fluid percolation along channels that become wider and host sericite platelets, as well as Cl-K-bearing inclusions, comparable with those from the Cu-As-zoned hematite, although without metal NPs. The Cu-As-bands mapped in hematite correspond to discrete NPs formed during interaction with fluids that changed in composition from alkali-silicic to Cl- and metal-bearing brines, and to fluid rates that evolved from slow infiltration to erratic inflow controlled by fault-valve mechanism pumping. This explains the presence of Cu-As NPs hosted either along Si-Al-K-planes (fluid supersaturation), or in fluid inclusions (phase separation during depressurisation) as well as the common signatures observed in hematite with variable degrees of fluid-mineral interaction. The invoked fluids are typical of hydrolytic alteration and the fluid pumping mechanism is feasible via fault (re)activation. Using a nanoscale approach, we show that fluid-mineral interaction can be fingerprinted at the (atomic) scale at which element exchange occurs. Full article
(This article belongs to the Special Issue Minerals Down to the Nanoscale: A Glimpse at Ore-Forming Processes)
Show Figures

Figure 1

Back to TopTop