Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = metadherin (MTDH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2278 KiB  
Review
Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH): A Promising Molecular Marker and Therapeutic Target for Hepatocellular Carcinoma
by Eva Davis, Ali Gawi Ermi and Devanand Sarkar
Cancers 2025, 17(8), 1375; https://doi.org/10.3390/cancers17081375 - 21 Apr 2025
Cited by 1 | Viewed by 899
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. The 5-year survival rate has been estimated to be less than 20% while its incidence rates have more than tripled since the 1980s. Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) has been demonstrated to [...] Read more.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. The 5-year survival rate has been estimated to be less than 20% while its incidence rates have more than tripled since the 1980s. Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) has been demonstrated to have an influential role in HCC progression and the development of an aggressive phenotype. AEG-1 has been shown to be upregulated in many cancers, including HCC. Studies have shown that it plays a crucial role in the proliferation, invasion and metastasis, and evasion of apoptosis in HCC. Its relationship with proteins and pathways, such as MYC, SND1, PI3K/AKT, and other signaling pathways demonstrates its pertinent role in oncogenic development and relevance as a biomarker and therapeutic target. Recent studies have shown that AEG-1 is present in tumor tissues, and the anti-AEG-1 antibody is detected in the blood of cancer patients, demonstrating its viability as a diagnostic/prognostic marker. This review paper shines light on recent findings regarding the molecular implications of AEG-1, with emphasis on its role of regulating metabolic dysfunction-associated steatohepatitis (MASH), a key predisposing factor for HCC, new treatment strategies targeting AEG-1, and challenges associated with analyzing this intriguing molecule. Full article
(This article belongs to the Special Issue Molecular Markers and Targeted Therapy for Hepatobiliary Tumors)
Show Figures

Figure 1

20 pages, 2683 KiB  
Article
Metadherin Regulates Inflammatory Breast Cancer Invasion and Metastasis
by Gabriela Ortiz-Soto, Natalia S. Babilonia-Díaz, Mercedes Y. Lacourt-Ventura, Delmarie M. Rivera-Rodríguez, Jailenne I. Quiñones-Rodríguez, Mónica Colón-Vargas, Israel Almodóvar-Rivera, Luis E. Ferrer-Torres, Ivette J. Suárez-Arroyo and Michelle M. Martínez-Montemayor
Int. J. Mol. Sci. 2023, 24(5), 4694; https://doi.org/10.3390/ijms24054694 - 28 Feb 2023
Cited by 4 | Viewed by 3150
Abstract
Inflammatory breast cancer (IBC) is one of the most lethal subtypes of breast cancer (BC), accounting for approximately 1–5% of all cases of BC. Challenges in IBC include accurate and early diagnosis and the development of effective targeted therapies. Our previous studies identified [...] Read more.
Inflammatory breast cancer (IBC) is one of the most lethal subtypes of breast cancer (BC), accounting for approximately 1–5% of all cases of BC. Challenges in IBC include accurate and early diagnosis and the development of effective targeted therapies. Our previous studies identified the overexpression of metadherin (MTDH) in the plasma membrane of IBC cells, further confirmed in patient tissues. MTDH has been found to play a role in signaling pathways related to cancer. However, its mechanism of action in the progression of IBC remains unknown. To evaluate the function of MTDH, SUM-149 and SUM-190 IBC cells were edited with CRISPR/Cas9 vectors for in vitro characterization studies and used in mouse IBC xenografts. Our results demonstrate that the absence of MTDH significantly reduces IBC cell migration, proliferation, tumor spheroid formation, and the expression of NF-κB and STAT3 signaling molecules, which are crucial oncogenic pathways in IBC. Furthermore, IBC xenografts showed significant differences in tumor growth patterns, and lung tissue revealed epithelial-like cells in 43% of wild-type (WT) compared to 29% of CRISPR xenografts. Our study emphasizes the role of MTDH as a potential therapeutic target for the progression of IBC. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 616 KiB  
Review
The microRNA-202 as a Diagnostic Biomarker and a Potential Tumor Suppressor
by Emad A. Ahmed, Peramaiyan Rajendran and Harry Scherthan
Int. J. Mol. Sci. 2022, 23(11), 5870; https://doi.org/10.3390/ijms23115870 - 24 May 2022
Cited by 21 | Viewed by 4047
Abstract
MicroRNA-202 (miR-202) is a member of the highly conserved let-7 family that was discovered in Caenorhabditis elegans and recently reported to be involved in cell differentiation and tumor biology. In humans, miR-202 was initially identified in the testis where it was suggested to [...] Read more.
MicroRNA-202 (miR-202) is a member of the highly conserved let-7 family that was discovered in Caenorhabditis elegans and recently reported to be involved in cell differentiation and tumor biology. In humans, miR-202 was initially identified in the testis where it was suggested to play a role in spermatogenesis. Subsequent research showed that miR-202 is one of the micro-RNAs that are dysregulated in different types of cancer. During the last decade, a large number of investigations has fortified a role for miR-202 in cancer. However, its functions can be double-edged, depending on context they may be tumor suppressive or oncogenic. In this review, we highlight miR-202 as a potential diagnostic biomarker and as a suppressor of tumorigenesis and metastasis in several types of tumors. We link miR-202 expression levels in tumor types to its involved upstream and downstream signaling molecules and highlight its potential roles in carcinogenesis. Three well-known upstream long non-coding-RNAs (lncRNAs); MALAT1, NORAD, and NEAT1 target miR-202 and inhibit its tumor suppressive function thus fueling cancer progression. Studies on the downstream targets of miR-202 revealed PTEN, AKT, and various oncogenes such as metadherin (MTDH), MYCN, Forkhead box protein R2 (FOXR2) and Kirsten rat sarcoma virus (KRAS). Interestingly, an upregulated level of miR-202 was shown by most of the studies that estimated its expression level in blood or serum of cancer patients, especially in breast cancer. Reduced expression levels of miR-202 in tumor tissues were found to be associated with progression of different types of cancer. It seems likely that miR-202 is embedded in a complex regulatory network related to the nature and the sensitivity of the tumor type and therapeutic (pre)treatments. Its variable roles in tumorigenesis are mediated in part thought its oncogene effectors. However, the currently available data suggest that the involved signaling pathways determine the anti- or pro-tumorigenic outcomes of miR-202’s dysregulation and its value as a diagnostic biomarker. Full article
(This article belongs to the Special Issue MicroRNA-Based Cancer Therapy 2022)
Show Figures

Figure 1

29 pages, 1187 KiB  
Review
Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance
by Debashri Manna and Devanand Sarkar
Cancers 2021, 13(8), 1792; https://doi.org/10.3390/cancers13081792 - 9 Apr 2021
Cited by 27 | Viewed by 4312
Abstract
Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, [...] Read more.
Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance. Full article
Show Figures

Figure 1

13 pages, 1091 KiB  
Article
Transcriptional Repression of Raf Kinase Inhibitory Protein Gene by Metadherin during Cancer Progression
by Trang Huyen Lai, Mahmoud Ahmed, Jin Seok Hwang, Sahib Zada, Trang Minh Pham, Omar Elashkar and Deok Ryong Kim
Int. J. Mol. Sci. 2021, 22(6), 3052; https://doi.org/10.3390/ijms22063052 - 17 Mar 2021
Cited by 7 | Viewed by 3292
Abstract
Raf kinase inhibitory protein (RKIP), also known as a phosphatidylethanolamine-binding protein 1 (PEBP1), functions as a tumor suppressor and regulates several signaling pathways, including ERK and NF-κκB. RKIP is severely downregulated in human malignant cancers, indicating a functional association with [...] Read more.
Raf kinase inhibitory protein (RKIP), also known as a phosphatidylethanolamine-binding protein 1 (PEBP1), functions as a tumor suppressor and regulates several signaling pathways, including ERK and NF-κκB. RKIP is severely downregulated in human malignant cancers, indicating a functional association with cancer metastasis and poor prognosis. The transcription regulation of RKIP gene in human cancers is not well understood. In this study, we suggested a possible transcription mechanism for the regulation of RKIP in human cancer cells. We found that Metadherin (MTDH) significantly repressed the transcriptional activity of RKIP gene. An analysis of publicly available datasets showed that the knockdown of MTDH in breast and endometrial cancer cell lines induced the expression RKIP. In addition, the results obtained from qRT-PCR and ChIP analyses showed that MTDH considerably inhibited RKIP expression. In addition, the RKIP transcript levels in MTDH-knockdown or MTDH-overexpressing MCF-7 cells were likely correlated to the protein levels, suggesting that MTDH regulates RKIP expression. In conclusion, we suggest that MTDH is a novel factor that controls the RKIP transcription, which is essential for cancer progression. Full article
(This article belongs to the Special Issue Transcription Factors in Cancer)
Show Figures

Figure 1

28 pages, 950 KiB  
Review
The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review
by Maheen Khan and Devanand Sarkar
Genes 2021, 12(2), 308; https://doi.org/10.3390/genes12020308 - 22 Feb 2021
Cited by 17 | Viewed by 4424
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal [...] Read more.
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Solid Tumors)
Show Figures

Figure 1

11 pages, 2870 KiB  
Article
Expression of MTDH and IL-10 Is an Independent Predictor of Worse Prognosis in ER-Negative or PR-Negative Breast Cancer Patients
by Pei-Yi Chu, Shin-Mae Wang, Po-Ming Chen, Feng-Yao Tang and En-Pei Isabel Chiang
J. Clin. Med. 2020, 9(10), 3153; https://doi.org/10.3390/jcm9103153 - 29 Sep 2020
Cited by 13 | Viewed by 3479
Abstract
(1) Background: Tumor hypoxia leads to metastasis and certain immune responses, and interferes with normal biological functions. It also affects glucose intake, down-regulates oxidative phosphorylation, and inhibits fatty-acid desaturation regulated by hypoxia-inducible factor 1α (HIF-1α). Although tumor hypoxia has been found to promote [...] Read more.
(1) Background: Tumor hypoxia leads to metastasis and certain immune responses, and interferes with normal biological functions. It also affects glucose intake, down-regulates oxidative phosphorylation, and inhibits fatty-acid desaturation regulated by hypoxia-inducible factor 1α (HIF-1α). Although tumor hypoxia has been found to promote tumor metastasis, the roles of HIF-1α-regulated genes and their application are not completely integrated in clinical practice. (2) Methods: We examined the correlation between HIF-1α, metadherin (MTDH), and interleukin (IL)-10 mRNA expression, as well as their expression patterns in the prognosis of breast cancer using the Gene Expression Profiling Interactive Analysis (GEPIA) databases via a web interface; tissue microarrays (TMAs) were stained for MTDH and IL-10 protein expression using immunohistochemistry. (3) Results: HIF-1α, MTDH, and IL-10 mRNA expression are highly correlated and strongly associated with poor prognosis. MTDH and IL-10 protein expression of breast cancer patients usually harbored negative estrogen receptor (ER) or progesterone receptor (PR) status, and late-stage tumors have higher IL-10 expression. With regard to MTDH and IL-10 protein expression status for using univariate and multivariate analysis, the results showed that the protein expression of MTDH and IL-10 in ER-negative or PR-negative breast cancer patients have the worse prognosis. (4) Conclusions: we propose a new insight into hypoxia tumors in the metabolism and immune evidence for breast cancer therapy. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Therapy of Breast Cancer)
Show Figures

Figure 1

18 pages, 4092 KiB  
Article
Phenethyl Isothiocyanate Suppresses Stemness in the Chemo- and Radio-Resistant Triple-Negative Breast Cancer Cell Line MDA-MB-231/IR Via Downregulation of Metadherin
by Yen Thi-Kim Nguyen, Jeong Yong Moon, Meran Keshawa Ediriweera and Somi Kim Cho
Cancers 2020, 12(2), 268; https://doi.org/10.3390/cancers12020268 - 22 Jan 2020
Cited by 33 | Viewed by 6016
Abstract
Resistance to chemotherapy and radiation therapy is considered a major therapeutic barrier in breast cancer. Cancer stem cells (CSCs) play a prominent role in chemo and radiotherapy resistance. The established chemo and radio-resistant triple-negative breast cancer (TNBC) cell line MDA-MB-231/IR displays greater CSC [...] Read more.
Resistance to chemotherapy and radiation therapy is considered a major therapeutic barrier in breast cancer. Cancer stem cells (CSCs) play a prominent role in chemo and radiotherapy resistance. The established chemo and radio-resistant triple-negative breast cancer (TNBC) cell line MDA-MB-231/IR displays greater CSC characteristics than the parental MDA-MB-231 cells. Escalating evidence demonstrates that metadherin (MTDH) is associated with a number of cancer signaling pathways as well as breast cancer therapy resistance, making it an attractive therapeutic target. Kaplan–Meier plot analysis revealed a correlation between higher levels of MTDH and shorter lifetimes in breast cancer and TNBC patients. Moreover, there was a positive correlation between the MTDH and CD44 expression levels in The Cancer Genome Atlas breast cancer database. We demonstrate that MTDH plays a pivotal role in the regulation of stemness in MDA-MB-231/IR cells. Knockdown of MTDH in MDA-MB-231/IR cells resulted in a reduction in the CSC population, aldehyde dehydrogenase activity, and major CSC markers, including β-catenin, CD44+, and Slug. In addition, MTDH knockdown increased reactive oxygen species (ROS) levels in MDA-MB-231/IR cells. We found that phenethyl isothiocyanate (PEITC), a well-known pro-oxidant phytochemical, suppressed stemness in MDA-MB-231/IR cells through ROS modulation via the downregulation of MTDH. Co-treatment of PEITC and N-Acetylcysteine (a ROS scavenger) caused alterations in PEITC induced cell death and CSC markers. Moreover, PEITC regulated MTDH expression at the post-transcriptional level, which was confirmed using cycloheximide, a protein synthesis inhibitor. Full article
Show Figures

Figure 1

17 pages, 322 KiB  
Review
Role of MTDH, FOXM1 and microRNAs in Drug Resistance in Hepatocellular Carcinoma
by Xiangbing Meng, Eric J. Devor, Shujie Yang, Brandon M. Schickling and Kimberly K. Leslie
Diseases 2014, 2(3), 209-225; https://doi.org/10.3390/diseases2030209 - 1 Jul 2014
Cited by 2 | Viewed by 7970
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies due to underlying co-morbid cirrhosis and chemo-resistance. Vaccination and improved treatment for hepatitis are the most effective means to reduce the burden of liver cancer worldwide. Expression of biomarkers such as AFP (alpha-fetoprotein), [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies due to underlying co-morbid cirrhosis and chemo-resistance. Vaccination and improved treatment for hepatitis are the most effective means to reduce the burden of liver cancer worldwide. Expression of biomarkers such as AFP (alpha-fetoprotein), DDK1 (Dickkopf WNT Signaling Pathway Inhibitor 1) and microRNAs in blood are being tested for early screening of liver cancer. Since 2008, sorafenib has been used as the standard molecular targeting agent for HCC. However, overall outcomes for sorafenib alone or in combination with other tyrosine kinase inhibitors are unsatisfactory. Whether simultaneously or sequentially, addiction switches and compensatory pathway activation in HCC, induced by sorafenib treatment, may induce acquired resistance. Forkhead box M1 (FOXM1) and metadherin (MTDH) have been shown to be master regulators of different aspects of tumorigenesis, including angiogenesis, invasion, metastasis and drug resistance. Elevated expression of both FOXM1 and MTDH is known to be a consequence of both activating mutations in oncogenes such as PI3K, Ras, myc and loss of function mutations in tumor suppressor genes such as p53 and PTEN in various types of cancers including HCC. The role of FOXM1 and MTDH as potential prognostic markers as well as therapeutic targets in HCC will be discussed. In addition, microRNAs (miRNAs), endogenous small non-coding RNAs involved in the regulation of gene expression, are involved in HCC and interact with both FOXM1 and MTDH in several ways. Thus, altered expression of miRNAs in HCCs will also be discussed as potential tools for diagnosis, prognosis and therapy in HCC. Full article
(This article belongs to the Special Issue Targeted Therapy of Hepatocellular Carcinoma: Present and Future)
Show Figures

Figure 1

Back to TopTop