Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = mesh filtration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1665 KiB  
Article
Evolution Mechanism of Filtration Characteristics of Cement Grouting Materials in Sandy Medium
by Xiao Feng, Shilei Zhang, Zhenzhong Shi, Qingsong Zhang, Meiling Li, Wenda Yang, Wen Sun and Benao Hou
Materials 2025, 18(10), 2385; https://doi.org/10.3390/ma18102385 - 20 May 2025
Viewed by 378
Abstract
The seepage diffusion of cement grouting materials into a sandy medium is influenced by the skeleton’s adsorption and the pore channels’ tortuosity, resulting in heterogeneous retention of cement particles during migration. This study established a theoretical model for the filtration coefficient based on [...] Read more.
The seepage diffusion of cement grouting materials into a sandy medium is influenced by the skeleton’s adsorption and the pore channels’ tortuosity, resulting in heterogeneous retention of cement particles during migration. This study established a theoretical model for the filtration coefficient based on the mass balance equation and linear filtration law. Grouting tests were conducted to determine the density of the cement slurry at various diffusion positions, and the filtration coefficient was calculated using the theoretical model. Results indicate that the filtration coefficient varies dynamically along the diffusion distance rather than remaining constant. The surface filtration range of Grade 42.5 Portland Cement slurry in sample S1 is approximately 30 cm, with a final diffusion distance of 190 cm. In contrast, the surface filtration ranges for the 800 mesh superfine cement in S2 and the 1250 mesh superfine cement in S3 are less than 10 cm, resulting in final diffusion distances of 69 cm and 87 cm, respectively. This demonstrates that a longer surface filtration range in the sand sample corresponds to a farther final diffusion distance of the slurry. Additionally, a larger ratio of sand pore diameter to cement particle size results in a smaller filtration coefficient and a greater slurry diffusion distance. Under a constant water–cement ratio, smaller cement particle sizes are associated with decreased slurry fluidity, which reduces the diffusion of cement slurry within the sandy medium. The research findings provide valuable insights for designing borehole spacing in grouting treatment for sandy media. Full article
Show Figures

Figure 1

16 pages, 5058 KiB  
Article
Titanium Meets Carbon: Enhanced Reusable Filters for Oil–Water Separation and Environmental Remediation
by Amir-Hadi Boroumand, Kayla Laguana, Eric Dudley, Pilar Cuadros-Arias, Adrian Rubio, Zachary Shin, Jack Webster and Mingheng Li
Separations 2025, 12(4), 83; https://doi.org/10.3390/separations12040083 - 30 Mar 2025
Cited by 1 | Viewed by 1370
Abstract
To mitigate the environmental effects of oil spills, a novel hydrophilic–oleophobic mixed-coated filter was developed for efficient oil–water separation and surface oil recovery. The coating consisted of titanium dioxide nanoparticles (TiO2) and ultra-fine carbon black powder, deposited onto a 304 stainless-steel [...] Read more.
To mitigate the environmental effects of oil spills, a novel hydrophilic–oleophobic mixed-coated filter was developed for efficient oil–water separation and surface oil recovery. The coating consisted of titanium dioxide nanoparticles (TiO2) and ultra-fine carbon black powder, deposited onto a 304 stainless-steel mesh substrate via spray deposition, followed by high-temperature sintering. This process induced a phase transition in TiO2 from anatase to rutile, and formed a TiC khamrabaevite. The filter’s performance was evaluated using contact angle measurements and filtration tests with a motor oil–water mixture, while SEM, EDS, and XRD analyses characterized its morphology and coating structure. Contact angle testing confirmed that carbon modification significantly enhanced the oleophobicity of the TiO2 filter, and SEM imaging demonstrated higher substrate coating adhesion, enabling multiple reuse cycles. These findings highlight the potential of TiO2 carbon composite coatings in improving oil spill remediation technologies by offering a reusable and efficient filtration system. Full article
Show Figures

Figure 1

15 pages, 11658 KiB  
Article
Polymer Flooding Injectivity Maintaining and Enhancement Strategies: A Field Case Study of Chinese Offshore EOR Project
by Chenxi Wang, Jian Zhang, Bo Huang, Hong Du, Xianghai Meng, Xianjie Li, Xinsheng Xue, Yi Su, Chao Li and Haiping Guo
Processes 2025, 13(3), 903; https://doi.org/10.3390/pr13030903 - 19 Mar 2025
Viewed by 601
Abstract
Polymer flooding has been gradually applied in Chinese offshore oilfields to enhance oil recovery (EOR). Injectivity loss during polymer flooding is a common issue that could cause lower displacement speed and efficiency, and eventually compromise the polymer flooding result. This paper presents a [...] Read more.
Polymer flooding has been gradually applied in Chinese offshore oilfields to enhance oil recovery (EOR). Injectivity loss during polymer flooding is a common issue that could cause lower displacement speed and efficiency, and eventually compromise the polymer flooding result. This paper presents a case study of a Chinese offshore field where injectivity loss issues were encountered in the polymer flooding project. A series of measures are applied to enhance the injectivity. The injectivity enhancement strategies are proposed and conducted from three main aspects, namely, (1) surface polymer fluid preparation; (2) downhole wellbore stimulation; and (3) reservoir–polymer compatibility, respectively. For the surface polymer fluid preparation, a series of sieve flow tests are conducted to obtain the optimal mesh size to improve the polymer fluid preparation quality and reduce the amount of “fish eyes”. The downhole wellbore stimulations involve oxidization-associated acidizing treatment and re-perforation. Polymer–reservoir compatibility tests are conducted to optimize the molecular weight (MW). Regarding the surface measures, the optimal filtration sieve mesh number is 200, which could reduce fish eyes to a desirable level without causing mesh plugging. After mesh refinement, the average injection pressure of the twelve injection wells decreases by 0.5 MPa. For the downhole stimulations, acidizing treatment are applied to six injection wells, which decreases the injection pressures by 6 to 7 MPa. For Well A, where acidizing does not work, the re-perforation measure is used and enhances the injectivity by 300%. Moreover, the laboratory and field polymer–reservoir compatibility tests show that the optimal polymer molecular weight (MW) is sixteen million. Proposed strategies applied from the surface, downhole, and reservoir aspects could be used to resolve different levels of injectivity loss, which could provide guidance for future offshore polymer projects. Full article
Show Figures

Figure 1

21 pages, 3777 KiB  
Article
Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation
by Nikhil Shylaja Prakash, Peter Maurer, Harald Horn, Florencia Saravia and Andrea Hille-Reichel
Membranes 2025, 15(1), 22; https://doi.org/10.3390/membranes15010022 - 11 Jan 2025
Viewed by 1853
Abstract
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental [...] Read more.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-Al2O3; pore size: 0.2 µm; cross-flow velocity: 3 m∙s−1; pressure = 2.2 bars). Firstly, primary sludge underwent dark fermentation yielding a hydrolyzate with a significant concentration of SCFAs along with total solids (TS) concentration in the range of 20 to 30 g∙L−1. The hydrolyzate was conditioned with hydroxypropyl trimethyl ammonium starch (HPAS), and then dewatered using a filter press, reducing TS by at least 60%, resulting in a filtrate with a suspended solids concentration ranging from 100 to 1300 mg∙L1. Despite the lower suspended solids concentration, the microfiltration membrane underwent severe fouling due to HPAS’s electrostatic interaction. Two methods were optimized for microfiltration: (1) increased backwashing frequency to sustain a permeate flux of 20 L∙m2∙h1 (LMH), and (2) surface charge modification to maintain the flux between 70 and 80 LMH. With backwashing, microfiltration can filter around 900 L∙meff−2 (without chemical cleaning), with the flux between 50 and 60 LMH under semi-continuous operation. Evaluating the particle-free permeate obtained from the treatment chain, around 4 gCSCFAs∙capita−1∙d−1 can be recovered from primary sludge with a purity of 0.85 to 0.97 CSCFAs∙DOC−1. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 1940 KiB  
Article
Study on the Performance of Filters Under Biogas Slurry Drip Irrigation Systems
by Shuaijie Wang, Haitao Wang, Xuefeng Qiu, Jiandong Wang, Shuji Wang, Hang Wang and Tao Shen
Agriculture 2025, 15(1), 30; https://doi.org/10.3390/agriculture15010030 - 26 Dec 2024
Cited by 2 | Viewed by 822
Abstract
Filters are essential components for maintaining the stability of drip irrigation systems, effectively reducing the risk of clogging. However, when applied to slurry drip irrigation systems, the complexity of slurry water quality makes it unclear how different filter types and their combinations affect [...] Read more.
Filters are essential components for maintaining the stability of drip irrigation systems, effectively reducing the risk of clogging. However, when applied to slurry drip irrigation systems, the complexity of slurry water quality makes it unclear how different filter types and their combinations affect the hydraulic performance of the system. This study provides a comprehensive performance evaluation of two common filter types and their combinations, considering various flow rates and biogas slurry-to-water ratios under drip irrigation conditions. The results revealed the following key findings: (1) In the application of biogas slurry drip irrigation, an increase in the concentration or flow rate of the slurry significantly affects the hydraulic performance of the filter, increasing the risk of clogging and shortening the operational lifespan. Notably, the impact of changes in slurry concentration on the hydraulic performance of the filter is much greater than that of the flow rate. Compared to mesh filters, disk filters offer better hydraulic performance, with the contaminant capacity of disk filters being approximately three times that of mesh filters. (2) In biogas slurry drip irrigation, the filter combination generally outperforms single filters in terms of hydraulic performance and contaminant removal capacity. Due to the unique nature of the water source in biogas slurry, a selection process for filter combinations was conducted. It was found that when a disk filter is used as the pre-filter and a mesh filter as the post-filter, the overall rate of head loss change is the smallest, and the clogging uniformity is the least. (3) In the entropy weight-TOPSIS comprehensive evaluation, the filter’s operating time and contaminant capacity are key factors affecting its overall performance. From the perspective of improving the operational stability of the biogas slurry drip irrigation system, it is recommended to use a disk filter + mesh filter combination. This study conducts practical measurements on the hydraulic performance, contaminant removal capacity, filtration accuracy, and other indicators of commonly used mesh and disk filters, aiming to provide useful references for the practical application of biogas slurry drip irrigation filters. Full article
(This article belongs to the Special Issue Livestock Waste Sustainable Management and Applications)
Show Figures

Figure 1

17 pages, 4017 KiB  
Article
Study on the Structural Characteristics of Mesh Filter Cake in Drip Irrigation: Based on the Growth Stage of Filter Cake
by Yangjuan Long, Zhenji Liu, Quanli Zong, Heyi Jing and Chen Lu
Agriculture 2024, 14(8), 1296; https://doi.org/10.3390/agriculture14081296 - 6 Aug 2024
Cited by 1 | Viewed by 1423
Abstract
Mesh filters are frequently employed in water-saving irrigation fields. Studies addressing the method of cake formation and the characteristics of the cake during the mesh filter’s growing phase are still missing. One-way and orthogonal experiments were carried out using mesh filters with 220 [...] Read more.
Mesh filters are frequently employed in water-saving irrigation fields. Studies addressing the method of cake formation and the characteristics of the cake during the mesh filter’s growing phase are still missing. One-way and orthogonal experiments were carried out using mesh filters with 220 μm and 320 μm aperture sizes as the research objects, taking particle concentrations, inlet flow, and growth phases as experimental factors. According to the variation rule of seed pressure drop in the formation process of filter cake, the growth process of filter cake is divided into four stages, which are as follows: slow blockage first and second stages (M1, M2), fast blockage stage (M3), and filter cake filtration stage (M4). Moreover, the size distribution, porosity (ε), pore-to-particle ratio (KP), and median size (d50) of the filter cake were used to represent the structural characteristics. The results show that the growth of filter cake was a process that started with the filling of mesh pores by intercepted particles and progressed to the filling of large-particle skeleton pores by subsequently filtered particles. During this process, the proportion of intercepted particles gradually decreased, while the proportion of filtered particles increased incrementally, and the median size (d50) and porosity (ε) decreased. Meanwhile, the smaller the aperture size of the screen, the smaller the filter cake’s median size (d50) was, but the larger the pore-to-particle ratio (KP) was. As the flow rate increased, the porosity (ε) was augmented in the M1 and M2 stages; however, it decreased in the M3 and M4 stages. The concentration had a minor influence on the filter cake’s porosity. Lastly, the regression model for filter cake porosity under two aperture size conditions was established, based on factors such as flow rate, concentration, and growth stage. The coefficients of determination, R2, for the model were 90.33% and 80.73%, indicating a good fit. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Graphical abstract

15 pages, 3528 KiB  
Article
Optimization of an Industrial Recycling Line: The Effect of Processing Parameters on Mechanical Properties of Recycled Polyethylene (PE) Blends
by Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert and Carl Diez
Waste 2024, 2(2), 186-200; https://doi.org/10.3390/waste2020011 - 28 May 2024
Viewed by 1764
Abstract
This study concerns the optimization of an industrial recycling line; in other terms, this paper aims to find the optimal processing parameters that allow for a decrease in the loss of stress crack resistance (SCR) using a notched crack ligament stress (NCLS) test [...] Read more.
This study concerns the optimization of an industrial recycling line; in other terms, this paper aims to find the optimal processing parameters that allow for a decrease in the loss of stress crack resistance (SCR) using a notched crack ligament stress (NCLS) test and an increase in the gain of the elongation at break, flexural modulus, and Izod impact strength of a polyethylene (PE) blend before and after recycling. The recycling line is composed mainly of a mono- and twin-screw extruder and a filtration system. Hence, the research question is as follows: How can we optimize the recycling process, without compromising the mechanical properties of recycled polyethylene (PE) blends? To answer the research question, Taguchi’s design of experiment and grey relational analysis (GRA) for multiobjective optimization was applied. Experiments were performed according to L16 standard orthogonal array based on five process parameters: mono-screw design, screw speed of the mono- and twin-screw extruder, melt pump pressure, and filter mesh size. Based on grey relational analysis (GRA), the optimal setting of process parameters was identified, and a barrier screw and a higher screw speed for both extruders were allowed to have optimal mechanical properties. Furthermore, the analysis of variance (ANOVA) indicated that the mono-screw design and screw speed of the mono- and twin-screw extruder significantly impact the mechanical properties of recycled polyethylene (PE) blends. Full article
Show Figures

Figure 1

11 pages, 1464 KiB  
Article
Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater
by Senouci Boulerial, Carlo Salerno, Fabiano Castrogiovanni, Marina Tumolo, Giovanni Berardi, Abdelkader Debab, Boumediene Haddou, Abdellah Benhamou and Alfieri Pollice
Processes 2024, 12(2), 323; https://doi.org/10.3390/pr12020323 - 2 Feb 2024
Cited by 1 | Viewed by 1676
Abstract
A self-forming dynamic membrane bioreactor (SFD MBR) is a cost-effective alternative to conventional MBR, in which the synthetic membrane is replaced by a “cake layer,” an accumulation of the biological suspension over a surface of inert, low-cost support originated by filtration itself. Under [...] Read more.
A self-forming dynamic membrane bioreactor (SFD MBR) is a cost-effective alternative to conventional MBR, in which the synthetic membrane is replaced by a “cake layer,” an accumulation of the biological suspension over a surface of inert, low-cost support originated by filtration itself. Under optimized conditions, the cake layer is easy to remove and quick to form again, resulting a “dynamic membrane.” The permeate of the SFD MBR has chemo-physical characteristics comparable to those of conventional ultrafiltration-based MBR. In this paper, two nylon meshes with pore sizes of 20 and 50 µm, respectively, were tested in a bench-scale SFD MBR in which an air mass load (AML) was periodically supplied tangentially to the filtration surface to maintain filtration effectiveness. The SFD MBR equipped with 20 µm nylon mesh coupled with 5 min of AML every 4 h showed the best performance, ensuring both a permeate with turbidity values always below 3 NTU and revealing no increases in transmembrane pressure (TMP) with manual maintenance needs. A benchmark test with the only difference of a suction break (relaxation) instead of AML was conducted under identical operating conditions for validation with an already known maintenance strategy. This latter test produced a permeate of very good quality, but it needed frequent TMP increases and consequent manual cleanings, showing that a periodic AML coupled with the use of a 20 µm mesh can be an optimal strategy for long-term operation of SFD MBR. Full article
Show Figures

Graphical abstract

14 pages, 1813 KiB  
Article
Development of Biological Risk Assessment Protocols for Evaluating the Risks of In-Water Cleaning of Hull-Fouling Organisms
by Bonggil Hyun, Pung-Guk Jang, Min-Chul Jang, Jung-Hoon Kang, Ju-Hyoung Kim, Jang-Seu Ki, Dong Han Choi, Ok Hwan Yu, Jin-Young Seo, Woo-Jin Lee and Kyoungsoon Shin
J. Mar. Sci. Eng. 2024, 12(2), 234; https://doi.org/10.3390/jmse12020234 - 29 Jan 2024
Cited by 3 | Viewed by 1859
Abstract
Herein, we evaluate the scientific basis for managing hull fouling of ships entering Korean ports, diagnose biological risks that may occur when in-water cleaning (IWC) systems remove hull fouling, and present a protocol for evaluating these risks (the Korean Infection Modes and Effects [...] Read more.
Herein, we evaluate the scientific basis for managing hull fouling of ships entering Korean ports, diagnose biological risks that may occur when in-water cleaning (IWC) systems remove hull fouling, and present a protocol for evaluating these risks (the Korean Infection Modes and Effects Analysis; K-IMEA). Protocol development included the selection of core elements and scenario design for IWC and the evaluation of regrowth experiments. The K-IMEA index was designed by considering the inoculation pathway of attaching organisms in all processes to ships that enter a port for in-water cleaning. A number of risk indices were defined: R1—Introduction/Establishment of alien species before in-water cleaning; R2—Establishment of alien species escaped during in-water cleaning; R3—Introduction/Establishment of alien species after in-water cleaning; and R4—Establishment of alien species in effluent water. K-IMEA regrowth experiments (R2 and R4) using the in-water cleaning effluent showed that the attachment and regrowth of prokaryotes, microalgae, and macroalgae were successfully detected. In particular, prokaryotes were observed in samples filtered through a 5 μm mesh of the in-water cleaning effluent, even at a low fouling rating (Levels 1–2). These experiments suggest a necessity to consider a secondary treatment method in addition to the primary filtration method for the treatment of in-water cleaning effluents. Full article
Show Figures

Figure 1

17 pages, 3538 KiB  
Article
Optimization of Critical Factors Affecting Dynamic Membrane Formation in a Gravity-Driven Self-Forming Dynamic Membrane Bioreactor towards Low-Cost and Low-Maintenance Wastewater Treatment
by Luhe Tang, Jingyu Zhang, Lulu Zha, Yisong Hu, Yiming Yang, Yunsheng Zhao, Xinglong Dong, Zhanjiu Wang, Weihang Deng and Yuan Yang
Water 2023, 15(22), 3963; https://doi.org/10.3390/w15223963 - 15 Nov 2023
Cited by 1 | Viewed by 1826
Abstract
Self-forming dynamic membrane (SFDM) formation is affected by a variety of operating conditions. However, previous studies have only focused on individual influencing factors and a systematic analysis of important factors is lacking. In this study, an aerobic self-forming dynamic membrane bioreactor (SFDMBR) was [...] Read more.
Self-forming dynamic membrane (SFDM) formation is affected by a variety of operating conditions. However, previous studies have only focused on individual influencing factors and a systematic analysis of important factors is lacking. In this study, an aerobic self-forming dynamic membrane bioreactor (SFDMBR) was developed for the treatment of domestic wastewater with the critical factors that affect the effective formation of SFDM optimized, and the operational performances under optimized formation conditions confirmed. The results indicated that SFDM could be formed within 5 min using 48 μm stainless-steel mesh as the supporting material at a sludge concentration of 5–6 g/L and a gravity waterhead of 15 cm. And the SFDM formed could maintain a stable flux of 30–50 LMH, and the removals of COD, SCOD, and NH4+-N were 93.28%, 82.85%, and 95.46%, respectively. Furthermore, the cake layer resistance (reversible fouling) contributed to 95.93% of the total filtration resistance, thus a simple physical cleaning can effectively restore the flux indicating a low-maintenance requirement. This study provides valuable insights into the optimization and application of the SFDMBR process. Full article
(This article belongs to the Special Issue Innovative Membrane Processes in Low-Carbon Wastewater Treatment)
Show Figures

Figure 1

16 pages, 5150 KiB  
Article
Fabrication and Characterization of TiO2 Coatings on 304 Stainless-Steel Substrate for Efficient Oil/Water Separation
by Jose Sico, Benjamin Tang, Dayana Flores, Roy Mouawad, Rheyana Punsalan, Yong X. Gan and Mingheng Li
Coatings 2023, 13(11), 1920; https://doi.org/10.3390/coatings13111920 - 9 Nov 2023
Cited by 3 | Viewed by 2561
Abstract
Oil spill accidents have been a prevalent threat to the environment. To aid in clean-up efforts, a stainless-steel filter with a hydrophilic and oleophobic coating was fabricated for efficient and affordable oil/water separation. Two solutions were used to deposit the coatings. One was [...] Read more.
Oil spill accidents have been a prevalent threat to the environment. To aid in clean-up efforts, a stainless-steel filter with a hydrophilic and oleophobic coating was fabricated for efficient and affordable oil/water separation. Two solutions were used to deposit the coatings. One was sourced from a titanium (IV) isopropoxide (TTIP) precursor dissolved into 1-butanol and the other through the mixing of titanium dioxide nanopowder with glacial acetic acid. The solutions were applied to 304 stainless-steel mesh filters of varying aperture sizes ranging from 30 microns to 240 microns. The coating was applied through a multiphase deposition method followed by sintering at 450 °C. The filter performance was evaluated by contact angle measurement and a filtration test using a mixture of motor oil and water, while the surface morphology and structure of the coatings were characterized by SEM-EDS and XRD. The mesh with smaller aperture size showed oil retention improvement of up to 99%. The TiO2 nanopowder coating, with a 92% oil retention efficiency, outperformed the coating via the TTIP precursor. Full article
Show Figures

Figure 1

12 pages, 5009 KiB  
Article
Comparing Methods for Microplastic Quantification Using the Danube as a Model
by Tim Kiefer, Martin Knoll and Andreas Fath
Microplastics 2023, 2(4), 322-333; https://doi.org/10.3390/microplastics2040025 - 17 Oct 2023
Cited by 4 | Viewed by 1791
Abstract
This study investigates the impact different mesh-sized filtration methods have on the amount of detected microplastics in the surface water of the Danube River delta. Further, the distribution of microplastics in different size categories (20 µm, 65 µm, 105 µm) and in the [...] Read more.
This study investigates the impact different mesh-sized filtration methods have on the amount of detected microplastics in the surface water of the Danube River delta. Further, the distribution of microplastics in different size categories (20 µm, 65 µm, 105 µm) and in the water column (0 m, 3 m, 6 m) was analyzed. Our findings show that the Danube River carries 46 p∙L−1 (microplastic particles per liter) with a size larger than 105 µm, 95 p∙L−1 larger than 65 µm and 2677 p∙L−1 that are larger than 20 µm. This suggests a negative logarithmic correlation between mesh size and particle amount. The most abundant polymer throughout all samples was polyethylene terephthalate, followed by polytetrafluorethylene. Overall, the data shows that different sampling methods cannot be compared directly. Further research is needed to find correlations in particle sizes for better comparison between different sampling methods. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

13 pages, 3751 KiB  
Article
Effect of Oxyfluorination of PFA-Coated Metal Mesh with Superhydrophobic Properties on the Filtration Performance of SiO2 Microparticles
by Kyung-Soo Kim, Cheol-Hwan Kwak, Seong-Min Ha, Jae-Chun Ryu and Young-Seak Lee
Molecules 2023, 28(7), 3110; https://doi.org/10.3390/molecules28073110 - 30 Mar 2023
Cited by 1 | Viewed by 2500
Abstract
Recently, semiconductor wastewater treatment has received much attention due to the emergence of environmental issues. Acid-resistant coatings are essential for metal prefilters used in semiconductor wastewater treatment. Perfluoroalkoxy alkane is mainly used as an acid-resistant coating agent, since PFA has inherent superhydrophobicity, water [...] Read more.
Recently, semiconductor wastewater treatment has received much attention due to the emergence of environmental issues. Acid-resistant coatings are essential for metal prefilters used in semiconductor wastewater treatment. Perfluoroalkoxy alkane is mainly used as an acid-resistant coating agent, since PFA has inherent superhydrophobicity, water permeability is lowered. To solve this problem, the surface of the PFA-coated metal mesh was treated via an oxyfluorination method in which an injected mixed gas of fluorine and oxygen reacted with the surface functional groups. Surface analysis, water contact angle measurement, and water permeability tests were performed on the surface-treated PFA-coated mesh. Consequently, the superhydrophobic surface was effectively converted to a hydrophobic surface as the PFA coating layer was surface-modified with C-O-OH functional groups via the oxyfluorination reaction. As a result of using simulation solutions that float silica particles of various sizes, the permeability and particle removal rate of the surface-modified PFA-coated stainless-steel mesh were improved compared to those before surface modification. Therefore, the oxyfluorination treatment used in this study was suitable for improving the filtration performance of SiO2 microparticles in the PFA-coated stainless-steel mesh. Full article
(This article belongs to the Special Issue Superhydrophobic and Superoleophobic Materials)
Show Figures

Graphical abstract

13 pages, 2326 KiB  
Article
Oil–Water Separation on Hydrophobic and Superhydrophobic Membranes Made of Stainless Steel Meshes with Fluoropolymer Coatings
by Alexandra Melnik, Alena Bogoslovtseva, Anna Petrova, Alexey Safonov and Christos N. Markides
Water 2023, 15(7), 1346; https://doi.org/10.3390/w15071346 - 30 Mar 2023
Cited by 17 | Viewed by 3924
Abstract
In this work, membranes were synthesized by depositing fluoropolymer coatings onto metal meshes using the hot wire chemical vapor deposition (HW CVD) method. By changing the deposition parameters, membranes with different wetting angles were obtained, with water contact angles for different membranes over [...] Read more.
In this work, membranes were synthesized by depositing fluoropolymer coatings onto metal meshes using the hot wire chemical vapor deposition (HW CVD) method. By changing the deposition parameters, membranes with different wetting angles were obtained, with water contact angles for different membranes over a range from 130° ± 5° to 170° ± 2° and a constant oil contact angle of about 80° ± 2°. These membranes were used for the separation of an oil–water emulsion in a simple filtration test. The main parameters affecting the separation efficiency and the optimal separation mode were determined. The results reveal the effectiveness of the use of the membranes for the separation of emulsions of water and commercial crude oil, with separation efficiency values that can reach over 99%. The membranes are most efficient when separating emulsions with a water concentration of less than 5%. The pore size of the membrane significantly affects the rate and efficiency of separation. Pore sizes in the range from 40 to 200 µm are investigated. The smaller the pore size of the membranes, the higher the separation efficiency. The work is of great economic and practical importance for improving the efficiency of the membrane separation of oil–water emulsions. It lays the foundation for future research on the use of hydrophobic membranes for the separation of various emulsions of water and oil products (diesel fuel, gasoline, kerosene, etc.). Full article
Show Figures

Figure 1

19 pages, 4511 KiB  
Article
Stabilized Electrospun Polyacrylonitrile Fibers for Advancements in Clean Air Technology
by Ivan P. Beckman, Gentry Berry, Mine Ucak-Astarlioglu, Travis L. Thornell, Heejin Cho and Guillermo Riveros
Atmosphere 2023, 14(3), 573; https://doi.org/10.3390/atmos14030573 - 16 Mar 2023
Cited by 4 | Viewed by 2955
Abstract
Particulate matter air pollution and volatile organic compounds released into the air from the incomplete combustion of fossil fuels and wildfires creates significant damage to human health and the environment. Advances in air filtration and purification technology are needed to mitigate aerosol hazards. [...] Read more.
Particulate matter air pollution and volatile organic compounds released into the air from the incomplete combustion of fossil fuels and wildfires creates significant damage to human health and the environment. Advances in air filtration and purification technology are needed to mitigate aerosol hazards. This article details an effort to explore the potential benefits of new materials and methods for the production of nonwoven air filtration media through electrospinning and stabilizing polyacrylonitrile fibers. The investigated production methods include electrospinning fibrous matting onto a stainless steel wire mesh and stabilizing the nonwoven media in a chamber furnace. The media is then tested for air filtration penetration and airflow resistance, and the fiber size distribution is measured using scanning electron microscopy. The experimental results show that the electrospun media approaches the performance criteria for airflow resistance and particle capture efficiency of high-efficiency particulate air (HEPA) filter media. Furthermore, performance estimations for electrospun media of increased thickness and for a decreased filtration velocity show potential to exceed the HEPA media resistance and efficiency criteria. Thus, it is suggested that electrospun and stabilized nonwoven fibrous media are candidates as alternatives to traditionally manufactured HEPA media and may potentially benefit modern air filtration technology and reduce hazards associated with particulate matter. Additionally, the authors recommend future exploration into the carbonization and activation of electrospun filter media for the adsorption and mitigation of volatile organic compounds as a secondary benefit, while maintaining high efficiency and low airflow resistance in the removal of particulate matter from aerosol streams. Full article
(This article belongs to the Special Issue Advances in Understanding Aerosols Filtration)
Show Figures

Figure 1

Back to TopTop