Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = megavoltage (MV) radiotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1712 KB  
Article
Application of a CdTe Photovoltaic Dosimeter to Therapeutic Megavoltage Photon Beams
by Sang Hee Youn, Sangsu Kim, Jong Hoon Lee and Shinhaeng Cho
Appl. Sci. 2025, 15(24), 13091; https://doi.org/10.3390/app152413091 - 12 Dec 2025
Viewed by 233
Abstract
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from [...] Read more.
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from a clinical linear accelerator to 20 kGy cumulative dose. Electrical and dosimetric properties were assessed based on AM 1.5 current–voltage measurements, external quantum efficiency (EQE), dose linearity, dose-rate dependence, field-size dependence, percentage depth dose (PDD), and one-month reproducibility. With increasing dose (5–20 kGy), the open-circuit voltage and fill factor decreased by ~2–3%, the short-circuit current density by ~10%, retaining ~87% initial efficiency. Series and shunt resistances were stable, while EQE decreased uniformly (~5%), indicating degradation mainly from increased nonradiative recombination. Dose–signal linearity remained intact, and post-irradiation sensitivity loss was corrected with a single calibration factor. Dose-rate dependence was minor; low reverse bias (~3–7 V) enhanced response without nonlinearity. Field-size and PDD responses agreed with ionization chamber data within ~1%, and weekly stability was within ~1%. Parallel stacking of two cells increased signal nearly linearly. CdTe solar-cell detectors thus enable zero-bias, real-time, stable, and scalable dosimetry and strongly agree with reference standards. Full article
Show Figures

Figure 1

28 pages, 4577 KB  
Article
An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities
by Monique Engelbrecht-Roberts, Xanthene Miles, Charlot Vandevoorde and Maryna de Kock
Molecules 2025, 30(5), 1038; https://doi.org/10.3390/molecules30051038 - 24 Feb 2025
Cited by 4 | Viewed by 2651
Abstract
Global disparities in cancer prevention, detection, and treatment demand a unified international effort to reduce the disease’s burden and improve outcomes. Despite advances in chemotherapy and radiotherapy, many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers, enhancing [...] Read more.
Global disparities in cancer prevention, detection, and treatment demand a unified international effort to reduce the disease’s burden and improve outcomes. Despite advances in chemotherapy and radiotherapy, many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers, enhancing the effectiveness of low-energy X-rays by emitting Auger electrons that cause localized cellular damage. In this study, spherical AuNPs of 5 nm and 10 nm were characterized and tested on various cell lines, including malignant breast cells (MCF-7), non-malignant cells (CHO-K1 and MCF-10A), and human lymphocytes. Cells were treated with AuNPs and irradiated with attenuated 6 megavoltage (MV) X-rays or p(66)/Be neutron radiation to assess DNA double-strand break (DSB) damage, cell viability, and cell cycle progression. The combination of AuNPs and neutron radiation induced higher levels of γ-H2AX foci and micronucleus formation compared to treatments with AuNPs or X-ray radiation alone. AuNPs alone reduced cellular kinetics and increased the accumulation of cells in the G2/M phase, suggesting a block of cell cycle progression. For cell proliferation, significant effects were only observed at the concentration of 50 μg/mL of AuNPs, while lower concentrations had no inhibitory effect. Further research is needed to quantify internalized AuNPs and correlate their concentration with the observed cellular effects to unravel the biological mechanisms of their radioenhancement. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Bioapplications, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 4902 KB  
Article
Characterization of the First Prototype of an Angular Independent Silicon Diode Array for Quality Assurance in Stereotactic Radiosurgery
by Aishah Bashiri, Sean Hood, Jessie Posar, Yashiv Dookie, Joanne McNamara, Joel Poder, Fathimat Zahra, Michael L. F. Lerch, Anatoly B. Rosenfeld and Marco Petasecca
Appl. Sci. 2024, 14(13), 5883; https://doi.org/10.3390/app14135883 - 5 Jul 2024
Viewed by 1777
Abstract
Quality assurance (QA) ensures the accurate and safe delivery of radiation treatment. However, there are several challenges for advanced radiotherapy techniques, such as stereotactic radiosurgery (SRS), where substantial doses of radiation with multi-directional beams and variable dose rates are delivered to specific areas. [...] Read more.
Quality assurance (QA) ensures the accurate and safe delivery of radiation treatment. However, there are several challenges for advanced radiotherapy techniques, such as stereotactic radiosurgery (SRS), where substantial doses of radiation with multi-directional beams and variable dose rates are delivered to specific areas. Current dosimeters lack high precision, exhibiting issues with dependency on the angle of measurement and the dose rate. This study investigates the characterization of a two-dimensional edgeless silicon diode array for QA in SRS. This detector underwent evaluation of its dose linearity, percentage depth dose (PDD), output factors (OFs), dose rate variability, and angular dependence with megavoltage linear accelerator beams. The edgeless array demonstrated a linear response in the direct detection of MV therapeutic X-rays with sensitivity of 6.95 × 10−3 ± 2.3 × 10−5 Gy/nC, and the percentage differences for PDD and OF measurements were found to be within 2% compared to the reference detector. A dose per pulse dependence of ±2% was demonstrated across the range of 0.12 to 0.39 mGy/pulse. The angular dependence was within 2% variation for irradiation angles greater than 80° and smaller than 120°; however, a maximum of 4% variation was observed with some diodes for angles between 80° and 120°. The improved performance of the edgeless array is likely to overcome limitations of the current dosimeters for SRS QA by operating without the need of any corrections. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

18 pages, 4067 KB  
Article
Quantifying Radiosensitization of PSMA-Targeted Gold Nanoparticles on Prostate Cancer Cells at Megavoltage Radiation Energies by Monte Carlo Simulation and Local Effect Model
by Ryder M. Schmidt, Daiki Hara, Jorge D. Vega, Marwan B. Abuhaija, Wensi Tao, Nesrin Dogan, Alan Pollack, John C. Ford and Junwei Shi
Pharmaceutics 2022, 14(10), 2205; https://doi.org/10.3390/pharmaceutics14102205 - 17 Oct 2022
Cited by 19 | Viewed by 3634
Abstract
Active targeting gold nanoparticles (AuNPs) are a very promising avenue for cancer treatment with many publications on AuNP mediated radiosensitization at kilovoltage (kV) photon energies. However, uncertainty on the effectiveness of AuNPs under clinically relevant megavoltage (MV) radiation energies hinders the clinical translation [...] Read more.
Active targeting gold nanoparticles (AuNPs) are a very promising avenue for cancer treatment with many publications on AuNP mediated radiosensitization at kilovoltage (kV) photon energies. However, uncertainty on the effectiveness of AuNPs under clinically relevant megavoltage (MV) radiation energies hinders the clinical translation of AuNP-assisted radiation therapy (RT) paradigm. The aim of this study was to investigate radiosensitization mediated by PSMA-targeted AuNPs irradiated by a 6 MV radiation beam at different depths to explore feasibility of AuNP-assisted prostate cancer RT under clinically relevant conditions. PSMA-targeted AuNPs (PSMA-AuNPs) were synthesized by conjugating PSMA antibodies onto PEGylated AuNPs through EDC/NHS chemistry. Confocal fluorescence microscopy was used to verify the active targeting of the developed PSMA-AuNPs. Transmission electron microscopy (TEM) was used to demonstrate the intracellular biodistribution of PSMA-AuNPs. LNCaP prostate cancer cells treated with PSMA-AuNPs were irradiated on a Varian 6 MV LINAC under varying depths (2.5 cm, 10 cm, 20 cm, 30 cm) of solid water. Clonogenic assays were carried out to determine the in vitro cell survival fractions. A Monte Carlo (MC) model developed on TOPAS platform was then employed to determine the nano-scale radial dose distribution around AuNPs, which was subsequently used to predict the radiation dose response of LNCaP cells treated with AuNPs. Two different cell models, with AuNPs located within the whole cell or only in the cytoplasm, were used to assess how the intracellular PSMA-AuNP biodistribution impacts the prostate cancer radiosensitization. Then, MC-based microdosimetry was combined with the local effect model (LEM) to calculate cell survival fraction, which was benchmarked against the in vitro clonogenic assays at different depths. In vitro clonogenic assay of LNCaP cells demonstrated the depth dependence of AuNP radiosensitization under clinical megavoltage beams, with sensitization enhancement ratio (SER) of 1.14 ± 0.03 and 1.55 ± 0.05 at 2.5 cm depth and 30 cm depth, respectively. The MC microdosimetry model showed the elevated percent of low-energy photons in the MV beams at greater depth, consequently resulting in increased dose enhancement ratio (DER) of AuNPs with depth. The AuNP-induced DER reached ~5.7 and ~8.1 at depths of 2.5 cm and 30 cm, respectively. Microdosimetry based LEM accurately predicted the cell survival under 6 MV beams at different depths, for the cell model with AuNPs placed only in the cell cytoplasm. TEM results demonstrated the distribution of PSMA-AuNPs in the cytoplasm, confirming the accuracy of MC microdosimetry based LEM with modelled AuNPs distributed within the cytoplasm. We conclude that AuNP radiosensitization can be achieved under megavoltage clinical radiotherapy energies with a dependence on tumor depth. Furthermore, the combination of Monte Carlo microdosimetry and LEM will be a valuable tool to assist with developing AuNP-aided radiotherapy paradigm and drive clinical translation. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles)
Show Figures

Figure 1

16 pages, 4034 KB  
Article
Enhanced Radiosensitization for Cancer Treatment with Gold Nanoparticles through Sonoporation
by Shao-Lun Lu, Wei-Wen Liu, Jason Chia-Hsien Cheng, Lien-Chieh Lin, Churng-Ren Chris Wang and Pai-Chi Li
Int. J. Mol. Sci. 2020, 21(21), 8370; https://doi.org/10.3390/ijms21218370 - 8 Nov 2020
Cited by 15 | Viewed by 4070
Abstract
We demonstrate the megavoltage (MV) radiosensitization of a human liver cancer line by combining gold-nanoparticle-encapsulated microbubbles (AuMBs) with ultrasound. Microbubbles-mediated sonoporation was administered for 5 min, at 2 h prior to applying radiotherapy. The intracellular concentration of gold nanoparticles (AuNPs) increased with the [...] Read more.
We demonstrate the megavoltage (MV) radiosensitization of a human liver cancer line by combining gold-nanoparticle-encapsulated microbubbles (AuMBs) with ultrasound. Microbubbles-mediated sonoporation was administered for 5 min, at 2 h prior to applying radiotherapy. The intracellular concentration of gold nanoparticles (AuNPs) increased with the inertial cavitation of AuMBs in a dose-dependent manner. A higher inertial cavitation dose was also associated with more DNA damage, higher levels of apoptosis markers, and inferior cell surviving fractions after MV X-ray irradiation. The dose-modifying ratio in a clonogenic assay was 1.56 ± 0.45 for a 10% surviving fraction. In a xenograft mouse model, combining vascular endothelial growth factor receptor 2 (VEGFR2)-targeted AuMBs with sonoporation significantly delayed tumor regrowth. A strategy involving the spatially and temporally controlled release of AuNPs followed by clinically utilized MV irradiation shows promising results that make it worthy of further translational investigations. Full article
(This article belongs to the Special Issue Nanoparticle-Based Radiosensitization 2.0)
Show Figures

Graphical abstract

Back to TopTop