Characterization of the First Prototype of an Angular Independent Silicon Diode Array for Quality Assurance in Stereotactic Radiosurgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dose Linearity
2.2. Dosimetry for Therapeutic X-ray Beams
2.2.1. Percentage Depth Dose (PDD)
Effective Point of Measurement (EPOM)
2.2.2. Output Factor
2.2.3. Dose per Pulse
2.2.4. Angular Dependence
3. Results
3.1. Dose Linearity and Sensitivity to MV X-rays
3.2. Dosimetry for Therapeutic X-ray Beams
3.2.1. Percentage Depth Dose (PDD)
Effective Point of Measurement
3.2.2. Output Factor
3.2.3. Dose per Pulse
3.2.4. Angular Dependence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, I.; Weidner, K.; Treutwein, M.; Koelbl, O. Stereotactic Radiosurgery of Brain Metastases: A Retrospective Study. Radiat. Oncol. 2023, 18, 202. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, N.; Lampros, M.G.; Filis, P.; Voulgaris, S.; Alexiou, G.A. Stereotactic Radiosurgery versus Whole-Brain Radiotherapy after Resection of Solitary Brain Metastasis: A Systematic Review and Meta-Analysis. World Neurosurg. X 2023, 18, 100170. [Google Scholar] [CrossRef] [PubMed]
- Tuleasca, C.; Carey, G.; Barriol, R.; Touzet, G.; Dubus, F.; Luc, D.; Carriere, N.; Reyns, N. Impact of Biologically Effective Dose on Tremor Decrease after Stereotactic Radiosurgical Thalamotomy for Essential Tremor: A Retrospective Longitudinal Analysis. Neurosurg. Rev. 2024, 47, 73. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D. Textbook of Stereotactic and Functional Neurosurgery; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Larson, D.A.; Barani, I.J.; Roach, M., III; Sethi, R.A. Handbook of Evidence-Based Stereotactic Radiosurgery and Stereotactic Body Radiotherapy; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
- Raza, G.H.; Capone, L.; Tini, P.; Giraffa, M.; Gentile, P.; Minniti, G. Single-Isocenter Multiple-Target Stereotactic Radiosurgery for Multiple Brain Metastases: Dosimetric Evaluation of Two Automated Treatment Planning Systems. Radiat. Oncol. 2022, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Uto, M.; Torizuka, D.; Mizowaki, T. Single Isocenter Stereotactic Irradiation for Multiple Brain Metastases: Current Situation and Prospects. Jpn. J. Radiol. 2022, 40, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Eder, M.M.; Reiner, M.; Heinz, C.; Garny, S.; Freislederer, P.; Landry, G.; Niyazi, M.; Belka, C.; Riboldi, M. Single-Isocenter Stereotactic Radiosurgery for Multiple Brain Metastases: Impact of Patient Misalignments on Target Coverage in Non-Coplanar Treatments. Z. Med. Phys. 2022, 32, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Poder, J.; Brown, R.; Porter, H.; Gupta, R.; Ralston, A. Development of a Dedicated Phantom for Multi-Target Single-Isocentre Stereotactic Radiosurgery End to End Testing. J. Appl. Clin. Med. Phys. 2018, 19, 99–108. [Google Scholar] [CrossRef]
- Pudsey, L.M.M.; Biasi, G.; Ralston, A.; Rosenfeld, A.; Poder, J. Detection of Rotational Errors in Single-Isocenter Multiple-Target Radiosurgery: Is a Routine Off-Axis Winston–Lutz Test Necessary? J. Appl. Clin. Med. Phys. 2022, 23, e13665. [Google Scholar] [CrossRef]
- Simmons, G.; Gallitto, M.; Lee, A.; Baltuch, G.; Youngerman, B.E.; Wang, T.J.C. The Use of Stereotactic Radiosurgery to Treat Functional Disorders: A Topic Discussion. Am. Soc. Radiat. Oncol. 2023, 13, 395–399. [Google Scholar] [CrossRef]
- IAEA. Dosimetry of Small Static Fields Used in External Beam Radiotherapy: An IAEA-AAPM International Code of Practice for Reference and Relative Dose Determination (No. 483); Technical Report Series; IAEA: Vienna, Austria, 2017. [Google Scholar]
- Taylor, M.L.; Kron, T.; Franich, R.D. A Contemporary Review of Stereotactic Radiotherapy: Inherent Dosimetric Complexities and the Potential for Detriment. Acta Oncol. 2011, 50, 483–508. [Google Scholar] [CrossRef]
- Kairn, T.; Charles, P.; Crowe, S.B.; Trapp, J.V. Effects of Inaccurate Small Field Dose Measurements on Calculated Treatment Doses. Australas. Phys. Eng. Sci. Med. 2016, 39, 747–753. [Google Scholar] [CrossRef]
- International Commission on Radiation Units and Measurements. ICRU REPORT 91: Prescribing, Recording, and Reporting of Stereotactic Treatments with Small Photon Beams. J. ICRU 2014, 14, 1–160. [Google Scholar]
- Ade, N.; Nam, T.L. The Influence of Detector Size Relative to Field Size in Small-Field Photon-Beam Dosimetry Using Synthetic Diamond Crystals as Sensors. Radiat. Phys. Chem. 2015, 113, 6–13. [Google Scholar] [CrossRef]
- De Martin, E.; Alhujaili, S.; Fumagalli, M.L.; Ghielmetti, F.; Marchetti, M.; Gallo, P.; Aquino, D.; Padelli, F.; Davis, J.; Alnaghy, S.; et al. On the Evaluation of Edgeless Diode Detectors for Patient-Specific QA in High-Dose Stereotactic Radiosurgery. Phys. Medica 2021, 89, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Tyler, M.; Liu, P.Z.Y.; Chan, K.W.; Ralston, A.; McKenzie, D.R.; Downes, S.; Suchowerska, N. Characterization of Small-Field Stereotactic Radiosurgery Beams with Modern Detectors. Phys. Med. Biol. 2013, 58, 7595–7608. [Google Scholar] [CrossRef] [PubMed]
- Blanck, O.; Masi, L.; Damme, M.C.; Hildebrandt, G.; Dunst, J.; Siebert, F.A.; Poppinga, D.; Poppe, B. Film-Based Delivery Quality Assurance for Robotic Radiosurgery: Commissioning and Validation. Phys. Medica 2015, 31, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Devic, S.; Tomic, N.; Lewis, D. Reference Radiochromic Film Dosimetry: Review of Technical Aspects. Phys. Medica 2016, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, S.; Cavedon, C.; Chuang, C.F.; Cohen, A.B.; Garrett, J.A.; Lee, C.L.; Lowenstein, J.R.; D’Souza, M.F.; Taylor, D.D.; Wu, X.; et al. Report of AAPM TG 135: Quality Assurance for Robotic Radiosurgery. Med. Phys. 2011, 38, 2914–2936. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Zhang, G.; Moros, E.G.; Feygelman, V. Comprehensive Evaluation of the High-Resolution Diode Array for SRS Dosimetry. J. Appl. Clin. Med. Phys. 2019, 20, 13–23. [Google Scholar] [CrossRef]
- Decabooter, E.; Swinnen, A.C.; Öllers, M.C.; Göpfert, F.; Verhaegen, F. Operation and Calibration of the Novel PTW 1600SRS Detector for the Verification of Single Isocenter Stereotactic Radiosurgery Treatments of Multiple Small Brain Metastases. Br. J. Radiol. 2021, 94, 20210473. [Google Scholar] [CrossRef]
- Junis, I.; Yousif, Y.; Stensmyr, R.; Barber, J. Comprehensive Characterisation of the IBA MyQA SRS for SRS and SBRT Patient Specific Quality Assurance. Phys. Eng. Sci. Med. 2024, 47, 327–337. [Google Scholar] [CrossRef]
- Shi, J.; Simon, W.E.; Zhu, T.C. Modeling the Instantaneous Dose Rate Dependence of Radiation Diode Detectors. Med. Phys. 2003, 30, 2509–2519. [Google Scholar] [CrossRef]
- Benmakhlouf, H.; Andreo, P. Spectral Distribution of Particle Fluence in Small Field Detectors and Its Implication on Small Field Dosimetry. Med. Phys. 2017, 44, 713–724. [Google Scholar] [CrossRef]
- Andreo, P. The Physics of Small Megavoltage Photon Beam Dosimetry. Radiother. Oncol. 2018, 126, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Alhujaili, S.F.; Biasi, G.; Alzorkany, F.; Grogan, G.; Al Kafi, M.A.; Lane, J.; Hug, B.; Aldosari, A.H.; Alshaikh, S.; Farzad, P.R.; et al. Quality Assurance of Cyberknife Robotic Stereotactic Radiosurgery Using an Angularly Independent Silicon Detector. J. Appl. Clin. Med. Phys. 2019, 20, 76–88. [Google Scholar] [CrossRef]
- Padelli, F.; Aquino, D.; Fariselli, L.; De Martin, E. IBA MyQA SRS Detector for CyberKnife Robotic Radiosurgery Quality Assurance. Appl. Sci. 2022, 12, 7791. [Google Scholar] [CrossRef]
- Alhujaili, S.F.; Davis, J.A.; Davies, J.; Lerch, M.L.F.; Rosenfeld, A.B.; Petasecca, M. Characterization of an “Edgeless” Dosimeter for Angular Independent Measurements in Advanced Radiotherapy Treatments. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 579–587. [Google Scholar] [CrossRef]
- Petasecca, M.; Alhujaili, S.; Aldosari, A.H.; Fuduli, I.; Newall, M.; Porumb, C.S.; Carolan, M.; Nitschke, K.; Lerch, M.L.F.; Kalliopuska, J.; et al. Angular Independent Silicon Detector for Dosimetry in External Beam Radiotherapy. Med. Phys. 2015, 42, 4708–4718. [Google Scholar] [CrossRef] [PubMed]
- Rozenfeld, A.B. Radiation Sensor and Dosimeter (MOSkin). Australian Patent. PCT/AU2008/000788. China Patent ZL 200880023328.8. US Patent N 8,742,357 B2, 3 June 2014. [Google Scholar]
- Fuduli, I.; Newall, M.K.; Espinoza, A.A.; Porumb, C.S.; Carolan, M.; Lerch, M.L.F.; Metcalfe, P.; Rosenfeld, A.B.; Petasecca, M. Multichannel Data Acquisition System Comparison for Quality Assurance in External Beam Radiation Therapy. Radiat. Meas. 2014, 71, 338–341. [Google Scholar] [CrossRef]
- Vicoroski, N.; Espinoza, A.; Duncan, M.; Oborn, B.M.; Carolan, M.; Metcalfe, P.; Menichelli, D.; Perevertaylo, V.L.; Lerch, M.L.F.; Rosenfeld, A.B.; et al. Development of a Silicon Diode Detector for Skin Dosimetry in Radiotherapy. Med. Phys. 2017, 44, 5402–5412. [Google Scholar] [CrossRef]
- Kawrakow, I. On the Effective Point of Measurement in Megavoltage Photon Beams. Med. Phys. 2006, 33, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Absorbed Dose Determination in External Beam Radiotherapy an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; IAEA Safety Standards and Related Publications: Vienna, Austria, 2024. [Google Scholar]
- Rogers, D.W.O. Analytic and Graphical Methods for Assigning Errors to Parameters in Non-Linear Least Squares Fitting. Nucl. Instrum. Methods 1975, 127, 253–260. [Google Scholar] [CrossRef]
- Wilkins, D.; Li, X.A.; Cygler, J.; Gerig, L. The Effect of Dose Rate Dependence of P-Type Silicon Detectors on Linac Relative Dosimetry. Med. Phys. 1997, 24, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.H.D.; Knittel, T.; Downes, S.; Carolan, M.; Lerch, M.L.F.; Petasecca, M.; Perevertaylo, V.L.; Metcalfe, P.; Jackson, M.; Rosenfeld, A.B. The Use of a Silicon Strip Detector Dose Magnifying Glass in Stereotactic Radiotherapy QA and Dosimetry. Med. Phys. 2011, 38, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Alhujaili, S. Development and Characterization of Solid-State Detectors for Medical Dosimetry in Intensity Modulated Radiation Therapy and Stereotactic Radiosurgery. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2019. [Google Scholar]
- Petasecca, M.; Newall, M.K.; Booth, J.T.; Duncan, M.; Aldosari, A.H.; Fuduli, I.; Espinoza, A.A.; Porumb, C.S.; Guatelli, S.; Metcalfe, P.; et al. MagicPlate-512: A 2D Silicon Detector Array for Quality Assurance of Stereotactic Motion Adaptive Radiotherapy. Med. Phys. 2015, 42, 2992–3004. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Xiao, Q.; Wang, Q.; Zhao, J.; Li, G.; Bai, S. Dosimetric Characteristics of a 2D Silicon Diode Array for Stereotactic Radiotherapy End-to-End Patient-Specific QA. Radiat. Phys. Chem. 2020, 173, 108885. [Google Scholar] [CrossRef]
- Markovic, M.; Stathakis, S.; Mavroidis, P.; Jurkovic, I.A.; Papanikolaou, N. Characterization of a Two-Dimensional Liquid-Filled Ion Chamber Detector Array Used for Verification of the Treatments in Radiotherapy. Med. Phys. 2014, 41, 51704. [Google Scholar] [CrossRef] [PubMed]
- Blanck, O.; Masi, L.; Chan, M.K.H.; Adamczyk, S.; Albrecht, C.; Damme, M.C.; Loutfi-Krauss, B.; Alraun, M.; Fehr, R.; Ramm, U.; et al. High Resolution Ion Chamber Array Delivery Quality Assurance for Robotic Radiosurgery: Commissioning and Validation. Phys. Medica 2016, 32, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.S.; Tirpak, L.; Van Casteren, K.; Zack, J.; Simon, T.; Schoenfeld, A.; Simon, W. Multi-Institution Validation of a New High Spatial Resolution Diode Array for SRS and SBRT Plan Pretreatment Quality Assurance. Med. Phys. 2020, 47, 3153–3164. [Google Scholar] [CrossRef]
- Looe, H.K.; Harder, D.; Poppe, B. Experimental Determination of the Effective Point of Measurement for Various Detectors Used in Photon and Electron Beam Dosimetry. Phys. Med. Biol. 2011, 56, 4267. [Google Scholar] [CrossRef]
- Weber, C.; Kranzer, R.; Weidner, J.; Kröninger, K.; Poppe, B.; Looe, H.K.; Poppinga, D. Small Field Output Correction Factors of the MicroSilicon Detector and a Deeper Understanding of Their Origin by Quantifying Perturbation Factors. Med. Phys. 2020, 47, 3165–3173. [Google Scholar] [CrossRef] [PubMed]
- Papaconstadopoulos, P.; Tessier, F.; Seuntjens, J. On the Correction, Perturbation and Modification of Small Field Detectors in Relative Dosimetry. Phys. Med. Biol. 2014, 59, 5937–5952. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.H.; Crowe, S.B.; Kairn, T.; Kenny, J.; Lehmann, J.; Lye, J.; Dunn, L.; Hill, B.; Knight, R.T.; Langton, C.M.; et al. The Effect of Very Small Air Gaps on Small Field Dosimetry. Phys. Med. Biol. 2012, 57, 6947. [Google Scholar] [CrossRef] [PubMed]
- Grusell, E.; Rikner, G. Radiation Damage Induced Dose Rate Non-Linearity in an n-Type Silicon Detector. Acta. Oncol. 1984, 23, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Rikner, G.; Grusell, E. Effects of Radiation Damage on P-Type Silicon Detectors. Phys. Med. Biol. 1983, 28, 1261. [Google Scholar] [CrossRef]
- Saini, A.S.; Zhu, T.C. Dose Rate and SDD Dependence of Commercially Available Diode Detectors. Med. Phys. 2004, 31, 914–924. [Google Scholar] [CrossRef]
- Rosenfeld, A.B.; Biasi, G.; Petasecca, M.; Lerch, M.L.F.; Villani, G.; Feygelman, V. Semiconductor Dosimetry in Modern External-Beam Radiation Therapy. Phys. Med. Biol. 2020, 65, 16TR01. [Google Scholar] [CrossRef]
Detector | Methodology | Angular Response | Reference |
---|---|---|---|
Edgeless | Coplanar, 0° to 180° 6 MV FF, 10 × 10 cm2 | −4% at 90° | This study |
SRS MapCHECK | Coplanar, −175° to 180° 6 MV FF, 5 × 5 cm2 | ±8% (±2%) | [42] |
Non-coplanar, 0° to 180° | ±8% (±4%, −8% at 90°) | [22] | |
Coplanar, full 360° range 6 MV FF, 5 × 5 cm2 | ±8% (±2%, −8% at 90°) | ||
Non-coplanar, 8 × 8 cm2 | ±8% (−3.5%) | ||
Octavius 1000SRS | Coplanar, 0° to 180° 6 MV FF, 5 × 5 cm2 | ±5% | [43] |
Coplanar, 0° to 90° CyberKnife, 60 mm cone | ±5%, >10% above 80° | [44] | |
IBA myQA SRS | Coplanar, 0° to 180° 6 MV FF, 2 × 2 cm2 6 MV FFF, 2 × 2 cm2 | 4.34% 8.45% | [24] |
Non-coplanar, 2 × 2 cm2 | −38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashiri, A.; Hood, S.; Posar, J.; Dookie, Y.; McNamara, J.; Poder, J.; Zahra, F.; Lerch, M.L.F.; Rosenfeld, A.B.; Petasecca, M. Characterization of the First Prototype of an Angular Independent Silicon Diode Array for Quality Assurance in Stereotactic Radiosurgery. Appl. Sci. 2024, 14, 5883. https://doi.org/10.3390/app14135883
Bashiri A, Hood S, Posar J, Dookie Y, McNamara J, Poder J, Zahra F, Lerch MLF, Rosenfeld AB, Petasecca M. Characterization of the First Prototype of an Angular Independent Silicon Diode Array for Quality Assurance in Stereotactic Radiosurgery. Applied Sciences. 2024; 14(13):5883. https://doi.org/10.3390/app14135883
Chicago/Turabian StyleBashiri, Aishah, Sean Hood, Jessie Posar, Yashiv Dookie, Joanne McNamara, Joel Poder, Fathimat Zahra, Michael L. F. Lerch, Anatoly B. Rosenfeld, and Marco Petasecca. 2024. "Characterization of the First Prototype of an Angular Independent Silicon Diode Array for Quality Assurance in Stereotactic Radiosurgery" Applied Sciences 14, no. 13: 5883. https://doi.org/10.3390/app14135883
APA StyleBashiri, A., Hood, S., Posar, J., Dookie, Y., McNamara, J., Poder, J., Zahra, F., Lerch, M. L. F., Rosenfeld, A. B., & Petasecca, M. (2024). Characterization of the First Prototype of an Angular Independent Silicon Diode Array for Quality Assurance in Stereotactic Radiosurgery. Applied Sciences, 14(13), 5883. https://doi.org/10.3390/app14135883