Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = medium-voltage distributor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3358 KiB  
Article
A Method for Power Flow Calculation in AC/DC Hybrid Distribution Networks Considering the Electric Energy Routers Based on an Alternating Iterative Approach
by Jie Zhao, Jinqiu Dou, Yunzhao Wu, Huaimin Xia, Qing Duan, Xuzhu Dong and Yiyang Zhang
Electronics 2024, 13(17), 3384; https://doi.org/10.3390/electronics13173384 - 26 Aug 2024
Cited by 2 | Viewed by 1400
Abstract
With the advancement of new power system construction, distribution networks are gradually transforming from being a simple energy receiver and distributor to being an integrated power network that integrates sources, networks, loads, and energy storage with interactive and flexible coupling with the upper-level [...] Read more.
With the advancement of new power system construction, distribution networks are gradually transforming from being a simple energy receiver and distributor to being an integrated power network that integrates sources, networks, loads, and energy storage with interactive and flexible coupling with the upper-level power grid. However, traditional distribution networks lack active control and distribution capabilities, failing to meet the demands of network transformation and upgrading. To address this issue, this paper proposes a method for solving AC/DC power flow calculation considering an electric energy router (EER) based on an alternating iterative method. Initially, the model for the multi-port EER and three types of power flow models for the AC distribution network, DC distribution network, and EER are constructed. By leveraging the properties of the EER and the hybrid power flow calculation model, a method is proposed for calculating the power flow in the AC/DC hybrid distribution network considering the EER. Finally, by solving the power flow in a medium- and low-voltage AC/DC distribution system, the adaptability of the proposed method is compared. The results demonstrate that the AC/DC hybrid distribution network power flow calculation method established in this paper, which incorporates the EER, possesses high accuracy and adaptability, with an error margin of less than 0.05%. Full article
(This article belongs to the Special Issue Compatibility, Power Electronics and Power Engineering)
Show Figures

Figure 1

19 pages, 10596 KiB  
Article
About the Aged Degradation of the Materials Used for Medium-Voltage Distributors
by Gabriel Nicolae Popa, Dimitar Aleksiev Nikolov and Corina Maria Diniș
Energies 2024, 17(14), 3418; https://doi.org/10.3390/en17143418 - 11 Jul 2024
Viewed by 980
Abstract
The medium-voltage components in the ignition installations for gasoline engines contain electroinsulating materials that lose their properties over time. The purpose of this paper is to measure and analyze the insulation resistance, dielectric absorption ratio and polarization index of the insulation of materials [...] Read more.
The medium-voltage components in the ignition installations for gasoline engines contain electroinsulating materials that lose their properties over time. The purpose of this paper is to measure and analyze the insulation resistance, dielectric absorption ratio and polarization index of the insulation of materials (three types of materials) used for medium-voltage distributors, for several operating periods, in automotive ignition installations. Experiments were conducted with old (operation tens of thousands of km, some with surfaces that have been cleaned) and new medium-voltage distributors, and a megohmmeter was used to measure, over time, the insulation resistance between the central terminal and the output terminals at different test voltages. The insulation resistance of the distributors depends on the use: in the old ones, they have values of tens of GΩ (e.g., up to 100 GΩ) and, in the new ones, of the order of TΩ (e.g., 4–7 TΩ). The more distributors are used, for the same distributor, there are greater differences between the measurements made between terminals and the average values (87% for used distributors, respectively, 2% for new ones). For new or less used distributors, higher values were obtained for the dielectric absorption ratio (1.26–1.27; for used ones, 0.91–0.95) and polarization index (1.15–1.25; for used ones, 0.96–1.15). The results show the importance of the volume insulation resistance of the electroinsulating material compared to the surface resistance and the insignificant improvement when cleaning the internal and external surfaces of the medium-voltage distributors. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

17 pages, 4500 KiB  
Article
Optimal Selection of Conductors in Distribution System Designs Using Multi-Criteria Decision
by Diego Ponce, Alexander Aguila Téllez and Narayanan Krishnan
Energies 2023, 16(20), 7167; https://doi.org/10.3390/en16207167 - 20 Oct 2023
Cited by 8 | Viewed by 1913
Abstract
The growth in the demand for electrical energy, which is driven by the constant growth of the metropolises and the expansion of the productive capacities of the industrial sector, entails the inevitable development of the electrical system to satisfy all the required demands [...] Read more.
The growth in the demand for electrical energy, which is driven by the constant growth of the metropolises and the expansion of the productive capacities of the industrial sector, entails the inevitable development of the electrical system to satisfy all the required demands in a convenient, efficient, and reliable manner. In this scenario, power distribution companies will continue to need to expand their electrical systems in the short and medium term to obtain the lowest investment and operating prices for the period considered in the analysis horizon. The expansion of the system can be projected statically or dynamically, which depends on the criteria that each distributor, in turn, applies in their expansion projects. Multi-criteria decision making can provide deeper analysis perspectives considering infinite possibilities for optimal network sizing and the technical, operational, quality of service, and even system reliability factors. This research proposes a multi-criteria decision technique based on the CRITIC method to determine the optimal design of an electrical distribution system. For this purpose, several design scenarios are defined with different types of electrical conductors, and the power flows are calculated in each. From these simulations, the results obtained in voltage profiles, namely active and reactive power losses, current levels, and the costs associated with the conductors used, are recorded. With the multi-criteria technique, the winning alternative is the design scenario containing the best joint solutions for the analysis variables. The proposed methodology is validated in an IEEE 34-bar test system. The Matpower tool, available through Matlab, generates power flows for each proposed design case. The results obtained in the analysis variables are generated and stored in a decision matrix of 210 alternatives. The proposed method represents a novel and powerful alternative for design proposals of distribution systems considering quality, efficiency, and cost criteria. Full article
Show Figures

Figure 1

16 pages, 4816 KiB  
Article
Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions
by Stefano Bifaretti, Vincenzo Bonaiuto, Sabino Pipolo, Cristina Terlizzi, Pericle Zanchetta, Francesco Gallinelli and Silvio Alessandroni
Energies 2021, 14(15), 4519; https://doi.org/10.3390/en14154519 - 27 Jul 2021
Cited by 8 | Viewed by 2969
Abstract
The role of distributor system operators is experiencing a gradual but relevant change to include enhanced ancillary and energy dispatch services needed to manage the increased power provided by intermittent distributed generations in medium voltage networks. In this context, the paper proposes the [...] Read more.
The role of distributor system operators is experiencing a gradual but relevant change to include enhanced ancillary and energy dispatch services needed to manage the increased power provided by intermittent distributed generations in medium voltage networks. In this context, the paper proposes the insertion, in strategic points of the network, of specific power electronic systems, denoted as active nodes, which permit the remote controllability of the active and reactive power flow. Such capabilities, as a further benefit, enable the distributor system operators to provide ancillary network services without requiring any procurement with distributed generation systems owners. In particular, the paper highlights the benefits of active nodes, demonstrating their capabilities in reducing the inverse power flow issues from medium to high voltage lines focusing on a network cluster including renewable energy resources. As a further novelty, this study has accounted for a real cluster operated by the Italian distributor system operator Areti. A specific simulation model of the electrical lines has been implemented in DigSilent PowerFactory (DIgSILENT GmbH–Germany) software using real operating data obtained during a 1-year measurement campaign. A detailed cost-benefit analysis has been provided, accounting for different load flow scenarios. The results have demonstrated that the inclusion of active nodes can significantly reduce the drawbacks related to the reverse power flow. Full article
Show Figures

Figure 1

16 pages, 1375 KiB  
Article
Optimization of IEDs Position in MV Smart Grids through Integer Linear Programming
by Francesco Bonavolontà, Vincenzo Caragallo, Alessandro Fatica, Annalisa Liccardo, Adriano Masone and Claudio Sterle
Energies 2021, 14(11), 3346; https://doi.org/10.3390/en14113346 - 7 Jun 2021
Cited by 4 | Viewed by 2769
Abstract
In the paper, an analytical method for determining the optimal positioning of intelligent electronic devices in medium voltage grids is proposed. Intelligent electronic devices are automated devices able to communicate one with each other and command the circuit breaker in order to localize [...] Read more.
In the paper, an analytical method for determining the optimal positioning of intelligent electronic devices in medium voltage grids is proposed. Intelligent electronic devices are automated devices able to communicate one with each other and command the circuit breaker in order to localize and isolate a line fault as fast as possible. However, the number of intelligent electronic devices to install has to be limited, due to the relevant installation costs and the reduction in the transmission bandwidth caused by the increased number of exchanged messages. So, the electrical distributor has to carefully detect the nodes of the grid where the intelligent electronic devices have to be installed. The authors propose a method based on integer linear programming, which, given the number of intelligent electronic devices to install, finds their optimal position, i.e., the one that minimizes the penalties associated with the power down experienced by customers. In order to highlight the offered advantages in terms of computational effort, the proposed approach has been assessed with a real medium voltage grid. Full article
(This article belongs to the Topic Innovative Techniques for Smart Grids)
Show Figures

Figure 1

Back to TopTop