Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = mass rock creep

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3895 KiB  
Article
Long-Term Mechanical Response of Jinping Ultra-Deep Tunnels Considering Pore Pressure and Engineering Disturbances
by Ersheng Zha, Mingbo Chi, Jianjun Hu, Yan Zhu, Jun Guo, Xinna Chen and Zhixin Liu
Appl. Sci. 2025, 15(15), 8166; https://doi.org/10.3390/app15158166 - 23 Jul 2025
Viewed by 191
Abstract
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in [...] Read more.
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in Abaqus. Validated numerical simulations of representative cross-sections at 1400 m and 2400 m depths in the diversion tunnel reveal that long-term creep deformations (over a 20-year period) substantially exceed instantaneous excavation-induced displacements. The stress concentrations and strain magnitudes exhibit significant depth dependence. The maximum principal stress at a 2400 m depth reaches 1.71 times that at 1400 m, while the vertical strain increases 1.46-fold. Based on this, the long-term mechanical behavior of the surrounding rock during the expansion of the Jinping auxiliary tunnel was further calculated and predicted. It was found that the stress concentration at the top and bottom of the left sidewall increases from 135 MPa to 203 MPa after expansion, identifying these as critical areas requiring focused monitoring and early warnings. The total deformation of the rock mass increases by approximately 5 mm after expansion, with the cumulative deformation reaching 14 mm. Post-expansion deformation converges within 180 days, with creep deformation of 2.5 mm–3.5 mm observed in both sidewalls, accounts for 51.0% of the total deformation during expansion. The surrounding rock reaches overall stability three years after the completion of expansion. These findings establish quantitative relationships between the excavation depth, time-dependent deformation, and stress redistribution and support the stability design, risk management, and infrastructure for ultra-deep tunnels in a stress state at a 2400 m depth. These insights are critical to ensuring the long-term stability of ultra-deep tunnels and operational safety assessments. Full article
Show Figures

Figure 1

22 pages, 9006 KiB  
Article
Stability Assessment of Rock Slopes in the Former Quarry of Wojciech Bednarski Park in Kraków—A Case Study
by Malwina Kolano, Marek Cała, Agnieszka Stopkowicz, Piotr Olchowy and Marek Wendorff
Appl. Sci. 2025, 15(13), 7197; https://doi.org/10.3390/app15137197 - 26 Jun 2025
Viewed by 247
Abstract
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly [...] Read more.
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly conducted geological surveys, stability calculations were performed for eight representative cross-sections corresponding to designated sectors. Numerical analyses were conducted using a finite element method (FEM) programme, based on the actual structure of the rock mass, specifically its discontinuities. This ensured a reliable reflection of the real conditions governing the slope instability mechanisms. Factors of safety were estimated with the Shear Strength Reduction Technique. The results indicate that slope failure is highly unlikely in Sectors 1 and 2 (FS > 1.50), unlikely but not fully meeting the safety criteria in Sector 3 (FS < 1.50), and highly probable in Sectors 4 and 6 (FS << 1.00), where unstable rock blocks and deeper structural slides are anticipated. In Sector 5, failure is considered probable (FS < 1.30) due to rockfalls, unstable blocks, and creeping weathered cover. For Sectors 7 and 8, assuming debris cover above the rock walls, failure is unlikely (FS > 1.50). In contrast, under the assumption of weathered material, it becomes probable in Sector 7 (FS < 1.30), and remains unlikely in Sector 8 (FS > 1.50). Due to the necessity of adopting several modelling assumptions, the results should be interpreted primarily in qualitative terms. The outcomes of this research provide a critical basis for assessing the stability of rock slopes within Wojciech Bednarski Park and support decision-making processes related to its planned revitalisation. Full article
Show Figures

Figure 1

20 pages, 16550 KiB  
Article
Non-Negligible Influence of Gravel Content in Slip Zone Soil: From Creep Characteristics to Landslide Response Patterns
by Bo Xu, Xinhai Zhao, Jin Yuan, Shun Dong, Xuhuang Du, Longwei Yang, Bo Peng and Qinwen Tan
Water 2025, 17(12), 1726; https://doi.org/10.3390/w17121726 - 7 Jun 2025
Viewed by 456
Abstract
The creep mechanical behavior of the slip zone soil is distinctive and assumes a vital role in the identification and prediction of landslide evolution, but the rock content and structure dictate its creep properties. This study examines the Outang landslide in the reservoir [...] Read more.
The creep mechanical behavior of the slip zone soil is distinctive and assumes a vital role in the identification and prediction of landslide evolution, but the rock content and structure dictate its creep properties. This study examines the Outang landslide in the reservoir region of middle Yangtze River, where the slip zone soil shows considerable variability in particle size distribution, with gravel content varying between 35% and 55%. To investigate the creep characteristics of the slip zone soil, large-scale direct shear creep tests were conducted, focusing on the variations in peak strength and long-term strength under different gravel content conditions. PFC3D numerical simulations were subsequently performed to elucidate the internal mechanisms connecting gravel content, microstructure, and macroscopic mechanical strength. A three-dimensional continuous-discrete coupled model was built to investigate the influence of gravel content on landslide deformation features, accounting for fluctuations in gravel content. The numerical findings indicate that gravel content markedly affects the displacement and deformation characteristics of the landslide. As the gravel concentration rises, landslide displacement progressively diminishes, with elevated gravel content enhancing the structural integrity of the landslide mass. This study underscores gravel content as a pivotal element in landslide deformation and reinforces its significance in assessing landslide stability and forecasting. Full article
Show Figures

Figure 1

16 pages, 3388 KiB  
Article
The Establishment of a Rock Creep Model by Using Creep Bodies via an Improved Gene Expression Programming Algorithm
by Pingyang Fan, Junhua Chen, Chuankun Qiu, Junwen Chen, Shan Gao, Jiqing Hou and Min Wang
Appl. Sci. 2025, 15(10), 5527; https://doi.org/10.3390/app15105527 - 15 May 2025
Viewed by 319
Abstract
Rock creep commonly appears in rock mass engineering, and it should be paid appropriate attention. In this paper, studies on creep constitutive models of rocks were reviewed, and it was found that the types of creep constitutive models can generally be classified into [...] Read more.
Rock creep commonly appears in rock mass engineering, and it should be paid appropriate attention. In this paper, studies on creep constitutive models of rocks were reviewed, and it was found that the types of creep constitutive models can generally be classified into two categories: theoretical formulas and combinations of creep bodies. Moreover, the combination of creep bodies has been used mainly for describing the creep characteristics of rocks; however, creep constitutive models have been constructed based on the subjectivity of studies in most cases, which is not objective or scientific enough. To avoid the subjectivity of establishing the creep constitutive model by using creep bodies, improved gene expression programming was utilized to construct the creep model. To verify the validity of the proposed method, two examples were given, and the corresponding creep constitutive models were obtained. The calculation results indicated that the proposed improved gene expression programming can be applied to establish a creep constitutive model in practice. Full article
Show Figures

Figure 1

18 pages, 3776 KiB  
Article
A Viscoelastic-Plastic Creep Model for Initial Damaged Coal Sample Affected by Loading Rate
by Peng Huang, Yimei Wei, Meng Li, Erkan Topal, Xinyong Teng and Wei Wang
Appl. Sci. 2025, 15(10), 5265; https://doi.org/10.3390/app15105265 - 8 May 2025
Viewed by 405
Abstract
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic [...] Read more.
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic loading effects triggered by adjacent mining activities (manifested as medium strain-rate loading) further exacerbate damage evolution and significantly influence creep characteristics. In this study, coal samples with identical initial damage were prepared, and graded loading creep tests were conducted at rates of 0.005 mm·s−1 (50 microstrains·s−1), 0.01 mm·s−1 (100 microstrains·s−1), 0.05 mm·s−1 (500 microstrains·s−1), and 0.1 mm·s−1 (1000 microstrains·s−1) to systematically analyze the coupled effects of loading rate on creep behavior. Experimental results demonstrate that increased loading rates markedly shorten creep duration, with damage rates during the acceleration phase showing nonlinear surges (e.g., abrupt instability at 0.1 mm·s−1 (1000 microstrains·s−1)). Based on experimental data, an integer-order viscoelastic-plastic creep model incorporating stress-dependent viscosity coefficients and damage correlation functions was developed, fully characterizing four behaviors stages: instantaneous deformation, deceleration, steady-state, and accelerated creep. Optimized via the Levenberg–Marquardt algorithm, the model achieved correlation coefficients exceeding 0.96, validating its accuracy. This model clarifies the impact mechanisms of loading rates on the long-term mechanical behavior of initially damaged coal samples, providing theoretical support for stability assessment and hazard prevention in underground engineering. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

30 pages, 3561 KiB  
Review
Physical and Mechanical Properties and Constitutive Model of Rock Mass Under THMC Coupling: A Comprehensive Review
by Jianxiu Wang, Bilal Ahmed, Jian Huang, Xingzhong Nong, Rui Xiao, Naveed Sarwar Abbasi, Sharif Nyanzi Alidekyi and Huboqiang Li
Appl. Sci. 2025, 15(4), 2230; https://doi.org/10.3390/app15042230 - 19 Feb 2025
Cited by 1 | Viewed by 1506
Abstract
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and [...] Read more.
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and underground space development are highly complex. In such settings, rocks are put through thermal-hydrological-mechanical-chemical (THMC) coupling effects under peak temperatures, strong osmotic pressures, extreme stress, and chemically reactive environments. The interaction between these fields is not a simple additive process but rather a dynamic interplay where each field influences the others. This paper provides a comprehensive analysis of fragmentation evolution, deformation mechanics, mechanical constitutive models, and the construction of coupling models under multi-field interactions. Based on rock strength theory, the constitutive models for both multi-field coupling and creep behavior in rocks are developed. The research focus on multi-field coupling varies across industries, reflecting the diverse needs of sectors such as mineral resource extraction, oil and gas production, geothermal energy, water conservancy, hydropower engineering, permafrost engineering, subsurface construction, nuclear waste disposal, and deep energy storage. The coupling of intense stress, fluid flow, temperature, and chemical factors not only triggers interactions between these fields but also alters the physical and mechanical properties of the rocks themselves. Investigating the mechanical behavior of rocks under these conditions is essential for averting accidents and assuring the soundness of engineering projects. Eventually, we discuss vital challenges and future directions in multi-field coupling research, providing valuable insights for engineering applications and addressing allied issues. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

23 pages, 22633 KiB  
Article
The Toppling Deformation and Failure Criteria of a Steep Bedding Rock Slope—The Case of a Bank Slope at the Duonuo Hydropower Station
by Tiantao Li, Xuan Li, Kaihong Wei, Jian Guo, Xi Heng, Jing Yuan, Weiling Ran and Xiangjun Pei
Water 2025, 17(4), 594; https://doi.org/10.3390/w17040594 - 18 Feb 2025
Cited by 1 | Viewed by 700
Abstract
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the [...] Read more.
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the toppling deformable body while considering the excavation process. Based on the deformation and failure phenomena observed in the bottom friction test model, along with the displacement curves at key points, the deformation process in steep bedding rock slopes can be divided into the following five distinct stages: the initial phase, the unloading–rebound phase, the tensile failure phase, the bending creep phase, and the bending–toppling damage phase. To evaluate the stability, a new constitutive model of the nonlinear viscoelastic–plastic rheology of rock masses was developed. This model is based on a nonlinear function derived from analyzing the creep test data of rock masses under fractional loading. Furthermore, a mechanical equilibrium differential equation for rock slabs was formulated to quantitatively describe the aging deformation and failure processes of slopes with delayed instability. Finally, a stability criterion and a quantitative evaluation model for toppling deformation slopes that considered time-varying factors were established. The stability of the model was calculated using a hydropower station slope case, and the results were found to be in good agreement with the actual situation. Full article
Show Figures

Figure 1

22 pages, 10705 KiB  
Article
The Anisotropic Time-Dependent Properties and Constitutive Model Analysis of Carbonaceous Slate with Different Foliation Angles
by Yuanguang Zhu, Xuanyao Wang, Bin Liu and Haoyuan Xue
Appl. Sci. 2025, 15(1), 236; https://doi.org/10.3390/app15010236 - 30 Dec 2024
Viewed by 767
Abstract
In tunnel construction in western China, a vast amount of carbonaceous slate is encountered. High in situ stress and foliation structures cause the rock mass to exhibit pronounced anisotropic creep, readily inducing a series of engineering disasters like collapses and lining cracks. Investigating [...] Read more.
In tunnel construction in western China, a vast amount of carbonaceous slate is encountered. High in situ stress and foliation structures cause the rock mass to exhibit pronounced anisotropic creep, readily inducing a series of engineering disasters like collapses and lining cracks. Investigating the anisotropic time-dependent characteristics of carbonaceous slate is beneficial to the long-term stability of tunnel construction and operation. In view of this, carbonaceous slate specimens with different angles, β, between the foliation plane and loading direction were studied using a graded loading method through uniaxial compression creep tests. The results show that the instantaneous axial strain, εi, the axial creep strain, εc, the duration time of decelerating creep stage, td, and the steady creep strain rate, ε˙s, increased with the rise in the loading ratio, k. Their variations followed a power law relationship, with the R2 (Coefficient of Determination) values all exceeding 0.95. The value of ε˙s was observed to be less than 1.5 × 10−4/h when β < 45°, while it was found to exceed 1.5 × 10−4/h in the cases of β45°. The long-term strength, σL, of carbonaceous slate showed a U-shaped pattern with the variation in β. The maximum σL occurred at β = 90° and the minimum was observed at β = 15°. A fractional nonlinear creep model (FNC model) was developed. The sensitivity analysis reveals that the larger the fractional order n is, the td and ε˙s increase. η2 and E2 primarily affect the decelerated creep stage, while the ε˙s exhibits a rapid increase with the rise of η1. To further validate the FNC model, a comparison is made with the traditional Nishihara model. The R2 of the FNC model is larger than 0.965, which is higher than that of the Nishihara model (R2 ≤ 0.911). The FNC model can effectively cope with the impact of the sudden increase in strain and well describe the characteristics of the decelerating, steady-state, and accelerating creep stages at any stress level and any angle. The results provide a reference for the study of the creep mechanism of layered rocks. Full article
Show Figures

Figure 1

23 pages, 7054 KiB  
Article
Study on the Performance of Modified Qingchuan Rock/Rubber Asphalt
by Wuan Li, Yukun Chen, Tengteng Guo, Zhenxia Li and Xiaoxiao Jiang
Coatings 2024, 14(10), 1246; https://doi.org/10.3390/coatings14101246 - 30 Sep 2024
Cited by 1 | Viewed by 969
Abstract
This paper developed a new environmentally friendly composite modified asphalt material and studied the composite modification of Qingchuan rock asphalt (QRA) and waste tire rubber powder (RP) was studied in this paper. QRA/RP composite modified asphalt was prepared by adding these two materials [...] Read more.
This paper developed a new environmentally friendly composite modified asphalt material and studied the composite modification of Qingchuan rock asphalt (QRA) and waste tire rubber powder (RP) was studied in this paper. QRA/RP composite modified asphalt was prepared by adding these two materials as modifiers into matrix asphalt and compared with matrix asphalt and QRA modified asphalt. The basic properties of asphalt before and after aging were evaluated by the rotating thin film oven test. The high-temperature performance and permanent deformation resistance at different temperatures and frequencies were analyzed by the dynamic shear rheological test. The bending creep stiffness test was used to evaluate the low-temperature performance. In addition, the microstructure and modification mechanism of composite-modified asphalt were analyzed by scanning electron microscopy and infrared spectroscopy. The results show that QRA-modified asphalt is superior to matrix asphalt in terms of mass loss, viscosity ratio, and residual penetration, while QRA/RP composite-modified asphalt is further improved on this basis, QRA/RP composite modified asphalt can effectively improve the high and low temperature performance of asphalt.. Although the addition of RP is mainly based on physical modification, it also causes weak chemical reactions and enhances the adhesion of asphalt. The interaction between Qingchuan Rock asphalt and rubber powder significantly improves the overall stability of asphalt structure. Full article
Show Figures

Figure 1

44 pages, 8150 KiB  
Review
Theories, Techniques and Materials for Sealing Coalbed Methane Extraction Boreholes in Underground Mines: A Review
by Ruiqing Bi, Miaomiao Guo, Shuai Wang, Yunguang Zhang, Xiaopeng Si, Xuexi Chen and Liang Zhang
Processes 2024, 12(9), 2022; https://doi.org/10.3390/pr12092022 - 19 Sep 2024
Cited by 4 | Viewed by 1455
Abstract
To further enhance the intelligent technology, platformisation, and systematisation of coalbed methane extraction sealing technology, this paper analyses the research progress of theories, technologies, and sealing materials related to coalbed methane extraction sealing and systematically summarises the latest achievements of the basic theories, [...] Read more.
To further enhance the intelligent technology, platformisation, and systematisation of coalbed methane extraction sealing technology, this paper analyses the research progress of theories, technologies, and sealing materials related to coalbed methane extraction sealing and systematically summarises the latest achievements of the basic theories, key technologies, and sealing materials of coalbed methane extraction. Considering the increasing mining depth, advancements in intelligent technology, and the evolving landscape of coalbed methane development, it is particularly important to establish a more comprehensive coalbed methane extraction borehole sealing system. Based on this, future development trends and research prospects are proposed: In terms of coalbed-methane-extraction-related theories, there should be a stronger focus on fundamental research such as on gas flow within the coal matrix. For coalbed methane extraction borehole sealing technologies and devices, efforts should be made to enhance research on intelligent, platform-based, and systematic approaches, while adapting to the application of directional long borehole sealing processes. In terms of coalbed methane extraction borehole leakage detection, non-contact measurement and non-destructive monitoring methods should be employed to achieve dynamic monitoring and early warning of methane leaks, integrating these technologies into coalbed methane extraction system platforms. For coalbed methane extraction borehole sealing materials, further development is needed for liquid sealing materials that address borehole creep and the development of fractures in surrounding rock, as well as solid sealing materials with Poisson’s ratios similar to that of the surrounding rock mass. Full article
Show Figures

Figure 1

10 pages, 1980 KiB  
Article
Creep Model and Experimental Verification of Sandstone under the Coupled Effect of Chemical Corrosion and Temperature
by Xia Xiu, Yong Wang, Ye Zhou, Geng Niu, Shijun Zhao and Degong Chang
Appl. Sci. 2024, 14(17), 7847; https://doi.org/10.3390/app14177847 - 4 Sep 2024
Cited by 3 | Viewed by 875
Abstract
The Nishihara creep model is an extremely effective method in the field of sandstone creep model research. However, the Nishihara creep model curve for sandstone under the marine environment (the coupled effect of chemical corrosion and temperature) does not fit the actual creep [...] Read more.
The Nishihara creep model is an extremely effective method in the field of sandstone creep model research. However, the Nishihara creep model curve for sandstone under the marine environment (the coupled effect of chemical corrosion and temperature) does not fit the actual creep test data well. Based on the Nishihara creep model, we discovered that, on the one hand, the viscoelastic elements in the Nishihara model are replaced by the viscoelastic elements containing temperature and pH factors, which can accurately describe the influence of temperature and pH on rock creep characteristics; on the other hand, the viscoplastic elements in the Nishihara model are replaced by nonlinear viscoplastic elements, which can accurately describe the accelerated creep stage of the rock mass. After modifying Nishihara’s creep model twice, a new temperature–pH damage nonlinear creep model is established. The creep curve of the temperature–pH damage nonlinear creep model is compared with the creep test data of sandstone. The comparison results indicate that the creep curve of the nonlinear creep model has a high degree of fit with the creep test data of sandstone (accuracy > 92%). This validates the correctness of the newly established temperature–pH damage nonlinear creep model presented in this paper, demonstrating that the new model can effectively reflect the influence of temperature and pH on the creep characteristics of sandstone. Full article
Show Figures

Figure 1

17 pages, 8685 KiB  
Article
Spatio-Temporal Prediction of Three-Dimensional Stability of Highway Shallow Landslide in Southeast Tibet Based on TRIGRS and Scoops3D Coupling Model
by Jiarui Mao, Xiumin Ma, Haojie Wang, Liyun Jia, Yao Sun, Bin Zhang and Wenhui Zhang
Water 2024, 16(9), 1207; https://doi.org/10.3390/w16091207 - 24 Apr 2024
Cited by 1 | Viewed by 1616
Abstract
National Highway G559 is the first highway in Southeast Tibet into Motuo County, which has not only greatly improved the difficult situation of local roads, but also promoted the economic development of Tibet. However, rainfall-induced shallow landslides occur frequently along the Bomi–Motuo section, [...] Read more.
National Highway G559 is the first highway in Southeast Tibet into Motuo County, which has not only greatly improved the difficult situation of local roads, but also promoted the economic development of Tibet. However, rainfall-induced shallow landslides occur frequently along the Bomi–Motuo section, which seriously affects the safe operation and construction work of the highway. Therefore, it is urgent to carry out geological disaster assessment and zoning along the highway. Based on remote-sensing interpretation and field investigation, the distribution characteristics and sliding-prone rock mass of shallow landslides along the Bomi–Motuo Highway were identified. Three-dimensional stability analysis of regional landslides along the Bomi-Motuo Highway under different rainfall scenarios was carried out based on the TRIGRS and Scoops3D coupled model (T-S model). The temporal and spatial distribution of potential rainfall landslides in this area is effectively predicted, and the reliability of the predicted results is also evaluated. The results show that: (1) The slope structure along the highway is mainly composed of loose gravel soil on the upper part and a strong weathering layer of bedrock on the lower part. The sliding surface is mostly a circular and plane type, and the main failure types are creep–tensile failure and flexural–tensile failure. (2) Based on the T-S coupling model, it is predicted that the potential landslide along the Bomi–Motuo Highway in the natural state is scattered. The distribution area of extremely unstable and unstable areas accounts for 4.92% of the total area. In the case of extreme rainfall once in a hundred years, the proportion of instability area (Fs < 1) predicted by the T-S coupling model 1 h after rainfall is 7.74%, which is 1.57 times that of the natural instability area. The instability area (Fs < 1) accounted for 43.40% of the total area after 12 h of rainfall. The potential landslides were mainly distributed in the Bangxin–Zhamu section and the East Gedang section. (3) The TRIGRS and T-S coupling model is both suitable for predicting the temporal–spatial distribution of rainfall-induced shallow landslides, but the TRIGRS model has the problem of over-prediction. The instability area predicted by the T-S coupling model accounted for 43.30%, and 74% of the historical landslide disaster points in the area were correctly predicted. (4) In terms of rainfall response, the T-S coupling model shows higher sensitivity. The %LRclass (Fs < 1) index of the T-S coupling model is above 50% in different time periods, and its landslide-prediction effect (%LRclass = 78.80%) was significantly better than that of the one-dimensional TRIGRS model (%LRclass = 45.50%) under a 12 h rainfall scenario. The research results have important reference significance for risk identification and disaster reduction along the G559 Bomi–Motuo Highway. Full article
(This article belongs to the Special Issue Assessment of the Rainfall-Induced Landslide Distribution)
Show Figures

Figure 1

13 pages, 10284 KiB  
Article
Study on Characteristics of Failure and Energy Evolution of Different Moisture-Containing Soft Rocks under Cyclic Disturbance Loading
by Xuewen Cao, Xuhui Tang, Lugen Chen, Dong Wang and Yujing Jiang
Materials 2024, 17(8), 1770; https://doi.org/10.3390/ma17081770 - 12 Apr 2024
Cited by 3 | Viewed by 1564
Abstract
During the coal mining process in soft rock mines with abundant water, the rock mass undergoes cyclic loading and unloading at low frequencies due to factors such as excavation. To investigate the mechanical characteristics and energy evolution laws of different water-containing rock masses [...] Read more.
During the coal mining process in soft rock mines with abundant water, the rock mass undergoes cyclic loading and unloading at low frequencies due to factors such as excavation. To investigate the mechanical characteristics and energy evolution laws of different water-containing rock masses under cyclic disturbance loading, a creep dynamic disturbance impact loading system was employed to conduct cyclic disturbance experiments on various water-containing soft rocks (0.00%, 1.74%, 3.48%, 5.21%, 6.95%, and 8.69%). A comparative analysis was conducted on the patterns of input energy density, elastic energy density, dissipated energy density, and damage variables of different water-containing soft rocks during the disturbance process. The results indicate that under the influence of disturbance loading, the peak strength of specimens, except for fully saturated samples, is generally increased to varying degrees. Weakness effects on the elastic modulus were observed in samples with 6.95% water content and saturated samples, while strengthening effects were observed in others. The input energy density of samples is mostly stored in the form of elastic strain energy within the samples, and different water-containing samples adapt to external loads within the first 100 cycles, with almost identical trends in energy indicators. Damage variables during the disturbance process were calculated using the maximum strain method, revealing the evolution of damage in the samples. From an energy evolution perspective, these experimental results elucidate the fatigue damage characteristics of water-containing rock masses under the influence of disturbance loading. Full article
Show Figures

Figure 1

18 pages, 10449 KiB  
Article
Derivation of Creep Parameters for Surrounding Rock through Creep Tests and Deformation Monitoring Data: Assessing Tunnel Lining Safety
by Jiangrong Pei, Lipeng Liu, Xiaogang Wang and Yuanqiao Ling
Appl. Sci. 2024, 14(5), 2090; https://doi.org/10.3390/app14052090 - 2 Mar 2024
Cited by 3 | Viewed by 1300
Abstract
Tunnel instability and lining integrity are intimately tied to the creep properties of the surrounding rock. The acquisition of rock mass creep parameters is critical in ascertaining the appropriate timing for lining construction. Nevertheless, creep tests on rock specimens conducted in a controlled [...] Read more.
Tunnel instability and lining integrity are intimately tied to the creep properties of the surrounding rock. The acquisition of rock mass creep parameters is critical in ascertaining the appropriate timing for lining construction. Nevertheless, creep tests on rock specimens conducted in a controlled setting cannot be straightforwardly extrapolated to rock mass creep analysis. This study performs laboratory-based creep tests on mudstone samples and establishes the corresponding creep constitutive model. The integration of a Mohr–Coulomb element with the Burgers model in series serves to characterize the yield creep behavior of the rock mass. Additionally, the research outlines a series of 100 orthogonal experiments utilizing randomized creep parameters and formulates a GA-BP neural network inversion model. Employing long-term deformation measurements from the crown and sidewalls of the project site, this study deduces the creep parameters of the mudstone in the investigated tunnel section and examines the prolonged deformation traits of the surrounding rock. Drawing on the deformation traits of the surrounding rock and the forces impacting the primary support and lining structures, this paper evaluates the earliest and latest viable lining casting periods and pinpoints an optimal timing interval for lining implementation. The methodologies employed herein can serve as a benchmark for analogous endeavors internationally. Full article
(This article belongs to the Special Issue Rock Mass Characterization: Failure and Mechanical Behavior)
Show Figures

Figure 1

17 pages, 3456 KiB  
Article
A Study on the Results of Risk Analyses Applying the Concept of Rock Mass Stand-Up Time for Underground Mining Sites
by Phong Duyen Nguyen, Hiep Huy Nguyen, Hung Huu Dam, Manh Van Nguyen, Piotr Osinski and Eugeniusz Koda
Appl. Sci. 2024, 14(5), 1736; https://doi.org/10.3390/app14051736 - 21 Feb 2024
Viewed by 1776
Abstract
Throughout all the countries in the world, including Vietnam, nations with well-established mining industries have undertaken extensive research on the stability of rock masses when constructing underground tunnels in varied geological conditions. The present study aims to provide a comprehensive overview of the [...] Read more.
Throughout all the countries in the world, including Vietnam, nations with well-established mining industries have undertaken extensive research on the stability of rock masses when constructing underground tunnels in varied geological conditions. The present study aims to provide a comprehensive overview of the risk assessment related to rock masses during the construction of pit lines in mining operations. Consequently, the standing time of unsupported tunnels is assessed based on different values of the strength index and deformation characteristics of the rock mass. The objective was to perform both experimental and theoretical investigations to analyse how the stand-up time of rock masses surrounding a tunnel affects the unsupported span. The analyses were based on considering the rock parameters, including strain modulus; geological strength index; and allowable displacement values, and consideration of hereditary creep properties. By examining tunnels excavated in rock strata, it was concluded that varying geological strength index values resulted in distinct creep behaviour in the surrounding rock masses. Thus, it was reasonable to compute the unsupported span and stand-up time of tunnels. The research revealed that permissible displacements are significantly influenced by the types of rock materials surrounding the tunnel structure. Recognising the significance of time, the authors introduce a more practical interpretation and evaluation of the stability of rock masses, thus enhancing the precision of commonly available models. Full article
(This article belongs to the Special Issue Soil-Structure Interaction in Structural and Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop