Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = mass rock creep

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 29670 KB  
Article
Slip-Surface Depth Inversion and Influencing Factor Analysis Based on the Integration of InSAR and GeoDetector: A Case Study of Typical Creep Landslide Groups in Li County
by Yue Shen, Xianmin Wang, Xiaoyu Yi, Li Cao and Haixiang Guo
Remote Sens. 2026, 18(2), 377; https://doi.org/10.3390/rs18020377 - 22 Jan 2026
Viewed by 107
Abstract
Creeping landslides constitute the predominant form of long-term, slow-moving geohazards in high mountain gorge regions. Under the combined influence of gravity and external triggering factors, these landslides undergo persistent deformation, posing continuous threats to major transportation corridors, hydropower infrastructures, and nearby settlements. Li [...] Read more.
Creeping landslides constitute the predominant form of long-term, slow-moving geohazards in high mountain gorge regions. Under the combined influence of gravity and external triggering factors, these landslides undergo persistent deformation, posing continuous threats to major transportation corridors, hydropower infrastructures, and nearby settlements. Li County is located within the active tectonic belt along the eastern margin of the Tibetan Plateau, characterized by highly variable topography, intensely fractured rock masses, and dense development of creeping landslides. The slip surfaces are typically deeply buried and concealed. Consequently, conventional drilling and profile-based investigations, limited by high costs, sparse sampling points, and poor spatial continuity, are insufficient for identifying the deep-seated structures of such landslides. To address this challenge, this study applies Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) to obtain ascending and descending deformation rate fields for 2022–2024, revealing pronounced spatial heterogeneity and persistent activity across three types of landslides. Based on the principle of mass conservation, the sliding-surface depths of eight typical landslides were inverted, revealing pronounced heterogeneity. The maximum sliding-surface depths range from 32 to 98 m and show strong agreement with borehole and profile data (R2 > 0.92; RMSE ±4.96–±16.56 m), confirming the reliability of the inversion method. The GeoDetector model was used to quantitatively evaluate the dominant factors controlling landslide depth. Elevation was identified as the primary control factor, while slope aspect exhibited significant influence in several landslides. All factor combinations showed either “bi-factor enhancement” or “nonlinear enhancement”, indicating that slip-surface depth is governed by synergistic interactions among multiple factors. Boxplot-based statistical analyses further revealed three typical patterns of slip-surface variation with elevation and slope, based on which the landslides were classified into rotational, push-type translational, and traction-type translational categories. By integrating statistical patterns with mechanical models, the study achieves a transition from “form” to “state”, enabling inference of the internal mechanical conditions and evolutionary stages from the observed surface morphology. The results of this study provide an effective technical approach for deep structural detection, identification of controlling factors, and stability evaluation of creeping landslides in high mountain gorge environments. Full article
Show Figures

Graphical abstract

19 pages, 7912 KB  
Article
Study on Creep Compression Characteristics of Pressure-Bearing Graded Crushed Rock
by Yu Tian, Mei Zhi, Jie Zhou, Pengfei Ji and Shitong Peng
Buildings 2026, 16(1), 116; https://doi.org/10.3390/buildings16010116 - 26 Dec 2025
Viewed by 209
Abstract
To study the creep compression characteristics and evolution mechanism of pressure-bearing graded crushed rock under constant load. Creep compression tests of crushed rock were conducted using the self-developed confined compression test system under different Talbot indexes and axial stresses. The axial displacement, void [...] Read more.
To study the creep compression characteristics and evolution mechanism of pressure-bearing graded crushed rock under constant load. Creep compression tests of crushed rock were conducted using the self-developed confined compression test system under different Talbot indexes and axial stresses. The axial displacement, void ratio, mass distribution, fractal dimension, and fragmentation of crushed rock during creep compression were analyzed. And the void ratio-fractal dimension model of crushed rock under pressure was established. The results reveal three-stage characteristics in axial displacement and void change, which correspond to rapid, attenuation, and stable change processes. The axial displacement and fragmentation amount are positively correlated with the axial stress and Talbot index, while the porosity is negatively correlated with them. The fractal dimension shows a positive correlation with axial stress and a negative correlation with the Talbot index. Additionally, a theoretical model was established to characterize the dynamic correlation between void ratio and fractal dimension during compression process, and its accuracy was verified, with a maximum error of only 0.0819. The research findings can provide insights for stability prediction and deformation control of crushed rock in engineering applications such as building foundation pits, ground treatment, and coal mine goafs. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Figure 1

20 pages, 5542 KB  
Article
Experimental Study on the Creep Behavior and Permeability Evolution of Tuff Under Unloading Confining Pressure with Seepage–Stress Coupling Effects
by Wenlong Dong, Lijun Han, Zishuo Liu, Yijiang Zong, Jun Tang and Dalong Yang
Processes 2025, 13(12), 4089; https://doi.org/10.3390/pr13124089 - 18 Dec 2025
Viewed by 321
Abstract
The long-term stability of deep underground excavations near aquifer-bearing strata is primarily controlled by the time-dependent deformation and permeability changes in the surrounding rock mass under the combined effects of mechanical loading and groundwater seepage. This study experimentally investigates the creep behavior and [...] Read more.
The long-term stability of deep underground excavations near aquifer-bearing strata is primarily controlled by the time-dependent deformation and permeability changes in the surrounding rock mass under the combined effects of mechanical loading and groundwater seepage. This study experimentally investigates the creep behavior and permeability evolution of tuff specimens subjected to stepwise reductions in confining pressure under coupled seepage and stress conditions. Conventional triaxial compression tests were conducted to determine the peak strength at confining pressures of 10, 15, and 20 MPa. Subsequently, triaxial creep tests were performed, maintaining axial stress at 70% of the previously established peak strength, with a constant seepage pressure of 4 MPa, while progressively decreasing the confining pressure. The results clearly reveal a three-stage creep process—with instantaneous, steady-state, and accelerated phases—with the radial strain exceeding axial strain and ultimately dominating at failure. This indicates that failure is characterized by significant volumetric expansion. At the specified initial confining pressures of 10 MPa, 15 MPa, and 20 MPa, the tuff specimens exhibited volumetric strains of −1.332, −1.119, and −0.836 at failure, respectively. Permeability evolution depends on the creep stage, showing a pronounced increase during the accelerated creep phase that often surpasses the cumulative permeability changes observed earlier. The specimen’s permeability at failure increased by factors of 3.97, 3.21, and 3.61 compared to the initial stage of the experiment, respectively. Additionally, permeability evolution exhibits a strong functional relationship with volumetric strain, which can be effectively modeled using an exponential function. The experimental findings further indicate that, as the confining pressure is gradually reduced, the permeability evolves following a clear exponential trend. Additionally, a higher initial confining pressure slows the rate at which permeability increases. These findings clarify the three-stage creep behavior and the associated evolution of the permeability index in tuff under coupled seepage–stress conditions. Additionally, they present a quantitative model linking permeability to volumetric strain, offering both a theoretical foundation and a new approach for assessing the long-term stability risks of deep underground engineering projects. Full article
Show Figures

Figure 1

23 pages, 4426 KB  
Article
Symmetry and Coupled Effects of Intermediate Principal Stress and Unloading Kinetics on Energy Dissipation and Fracture Behavior of Sandstone
by Xianqi Zhou, Zhuotao You, Wei Yao, Jinbi Ye and Erchao Fu
Symmetry 2025, 17(12), 2100; https://doi.org/10.3390/sym17122100 - 7 Dec 2025
Viewed by 274
Abstract
Excavation unloading in deep rock masses involves a transition from symmetric states of energy storage to asymmetric energy dissipation, in which variations in intermediate principal stress (σ2) play a critical role. To investigate these symmetry-breaking mechanisms, controlled-rate true triaxial unloading [...] Read more.
Excavation unloading in deep rock masses involves a transition from symmetric states of energy storage to asymmetric energy dissipation, in which variations in intermediate principal stress (σ2) play a critical role. To investigate these symmetry-breaking mechanisms, controlled-rate true triaxial unloading experiments were performed on sandstone using a miniature creep-coupled testing system. During unloading of σ3 at 0.1–0.3 MPa/s, the evolution of elastic, dissipated, and plastic energies was quantitatively evaluated. The results reveal pronounced asymmetric energy responses governed by both σ2 and the unloading rate. Dissipated energy dominates the entire unloading process, while elastic energy exhibits a non-monotonic trend with increasing σ2—first rising due to enhanced confinement and then decreasing as premature failure occurs. Higher unloading rates significantly accelerate total, elastic, and dissipated energy conversion and intensify post-peak brittleness. A new metric, plastically released energy, is proposed to quantify the asymmetric energy release from peak to residual state after failure. Its dependence on σ2 is strongly non-monotonic, increasing under moderate σ2 but decreasing when σ2 is sufficiently high to trigger failure during unloading. This behavior captures the essential symmetry-breaking transition between elastic energy accumulation and irreversible plastic dissipation. These findings demonstrate that true triaxial unloading induces energy evolution patterns far from symmetry, controlled jointly by σ2 and unloading kinetics. The established correlations between σ2, unloading rate, and plastically released energy enrich the theoretical framework of energy-based symmetry in rock mechanics and offer insights for evaluating excavation-induced instability in deep underground engineering. Full article
Show Figures

Figure 1

25 pages, 7021 KB  
Article
Mechanism and Parametric Study on Pullout Failure of Tunnel Anchorage in Suspension Bridges
by Menglong Dong, Zhijin Shen, Xiaojie Geng, Li Zhang and Aipeng Tang
Appl. Sci. 2025, 15(21), 11587; https://doi.org/10.3390/app152111587 - 30 Oct 2025
Viewed by 464
Abstract
Tunnel anchorages are critical components in long-span suspension bridges, transferring immense cable forces into the surrounding rock mass. Although previous studies have advanced the understanding of their pullout behavior through field tests, laboratory models, numerical simulations, and theoretical analyses, significant challenges remain in [...] Read more.
Tunnel anchorages are critical components in long-span suspension bridges, transferring immense cable forces into the surrounding rock mass. Although previous studies have advanced the understanding of their pullout behavior through field tests, laboratory models, numerical simulations, and theoretical analyses, significant challenges remain in predicting their performance in complex geological conditions. This study investigates the pullout failure mechanism and bearing behavior of tunnel anchorages situated in heterogeneous conglomerate rock, with application to the Wujiagang Yangtze River Bridge in China to employ a tunnel anchorage in such strata. An integrated research methodology is adopted, combining in situ and laboratory geotechnical testing, a highly instrumented 1:12 scaled field model test, and detailed three-dimensional numerical modeling. The experimental program characterizes the strength and deformation properties of the rock, while the field test captures the mechanical response under design, overload, and ultimate failure conditions. Numerical models, calibrated against experimental results, are employed to analyze the influence of key parameters such as burial depth, inclination, and overburden strength. Furthermore, the long-term stability and creep behavior of the anchorage are evaluated. The results reveal the deformation characteristics, failure mode, and ultimate pullout capacity specific to weakly cemented and stratified rock. The study provides novel insights into the rock–anchorage interaction mechanism under these challenging conditions and validates the feasibility of tunnel anchorages in complex geology. The findings offer practical guidance for the design and construction of future tunnel anchorages in similar settings, ensuring both safety and economic efficiency. Full article
Show Figures

Figure 1

13 pages, 5611 KB  
Article
Study of the Deformation and Instability Characteristics and Treatment of Gentle Tilt-Creeping Open-Pit Mine Slopes Containing Weak Interlayers
by Xiaojie Wang, Guihe Wang, Meimei Wang and Hanxun Wang
Appl. Sci. 2025, 15(18), 9960; https://doi.org/10.3390/app15189960 - 11 Sep 2025
Viewed by 789
Abstract
The creep failure of open-pit mine slopes with weak interlayers is one of the main types of slope instability in open-pit mines. The scientific and reasonable treatment of this type of landslide is of great significance for improving the quality of open-pit mining. [...] Read more.
The creep failure of open-pit mine slopes with weak interlayers is one of the main types of slope instability in open-pit mines. The scientific and reasonable treatment of this type of landslide is of great significance for improving the quality of open-pit mining. In this study, we study a gently inclined and creep-type slope with weak interlayers in an open-pit mine in Inner Mongolia, China, and conduct systematic on-site engineering geological investigations, laboratory tests, and numerical simulations. The particle swarm optimization algorithm is introduced, and the creep model combining Burgers and Mohr–Coulomb is selected. Combined with triaxial compression creep test data, the creep model parameters of the weak interlayer soil are intelligently inverted. A typical profile is selected to analyze the stability of the slope. The results show that the creep of the weak interlayer is the main controlling factor for the deformation and failure of the slope. Under natural conditions, a clear continuous plastic zone appears at the front edge of the weak interlayer and the rear edge of the sliding body, resulting in slope instability and large deformation. Our results are in good agreement with the reality of engineering. Furthermore, we study the effectiveness of the local reinforcement treatment method for the weak interlayer. This study shows that local reinforcement of the weak interlayer is one of the most economical and effective means of preventing and controlling landslides. After reinforcement, the plastic zone of the slope only appears near the rear edge of the sliding body and the reinforced rock mass, with a poor connection, and the stability of the slope is good. Our results provide effective technical support for the treatment of this slope and offer a reference for the disaster prevention and mitigation of gently inclined and creep-type open-pit mine slopes with weak interlayers. Full article
(This article belongs to the Special Issue A Geotechnical Study on Landslides: Challenges and Progresses)
Show Figures

Figure 1

18 pages, 3895 KB  
Article
Long-Term Mechanical Response of Jinping Ultra-Deep Tunnels Considering Pore Pressure and Engineering Disturbances
by Ersheng Zha, Mingbo Chi, Jianjun Hu, Yan Zhu, Jun Guo, Xinna Chen and Zhixin Liu
Appl. Sci. 2025, 15(15), 8166; https://doi.org/10.3390/app15158166 - 23 Jul 2025
Viewed by 739
Abstract
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in [...] Read more.
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in Abaqus. Validated numerical simulations of representative cross-sections at 1400 m and 2400 m depths in the diversion tunnel reveal that long-term creep deformations (over a 20-year period) substantially exceed instantaneous excavation-induced displacements. The stress concentrations and strain magnitudes exhibit significant depth dependence. The maximum principal stress at a 2400 m depth reaches 1.71 times that at 1400 m, while the vertical strain increases 1.46-fold. Based on this, the long-term mechanical behavior of the surrounding rock during the expansion of the Jinping auxiliary tunnel was further calculated and predicted. It was found that the stress concentration at the top and bottom of the left sidewall increases from 135 MPa to 203 MPa after expansion, identifying these as critical areas requiring focused monitoring and early warnings. The total deformation of the rock mass increases by approximately 5 mm after expansion, with the cumulative deformation reaching 14 mm. Post-expansion deformation converges within 180 days, with creep deformation of 2.5 mm–3.5 mm observed in both sidewalls, accounts for 51.0% of the total deformation during expansion. The surrounding rock reaches overall stability three years after the completion of expansion. These findings establish quantitative relationships between the excavation depth, time-dependent deformation, and stress redistribution and support the stability design, risk management, and infrastructure for ultra-deep tunnels in a stress state at a 2400 m depth. These insights are critical to ensuring the long-term stability of ultra-deep tunnels and operational safety assessments. Full article
Show Figures

Figure 1

22 pages, 9006 KB  
Article
Stability Assessment of Rock Slopes in the Former Quarry of Wojciech Bednarski Park in Kraków—A Case Study
by Malwina Kolano, Marek Cała, Agnieszka Stopkowicz, Piotr Olchowy and Marek Wendorff
Appl. Sci. 2025, 15(13), 7197; https://doi.org/10.3390/app15137197 - 26 Jun 2025
Cited by 2 | Viewed by 1108
Abstract
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly [...] Read more.
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly conducted geological surveys, stability calculations were performed for eight representative cross-sections corresponding to designated sectors. Numerical analyses were conducted using a finite element method (FEM) programme, based on the actual structure of the rock mass, specifically its discontinuities. This ensured a reliable reflection of the real conditions governing the slope instability mechanisms. Factors of safety were estimated with the Shear Strength Reduction Technique. The results indicate that slope failure is highly unlikely in Sectors 1 and 2 (FS > 1.50), unlikely but not fully meeting the safety criteria in Sector 3 (FS < 1.50), and highly probable in Sectors 4 and 6 (FS << 1.00), where unstable rock blocks and deeper structural slides are anticipated. In Sector 5, failure is considered probable (FS < 1.30) due to rockfalls, unstable blocks, and creeping weathered cover. For Sectors 7 and 8, assuming debris cover above the rock walls, failure is unlikely (FS > 1.50). In contrast, under the assumption of weathered material, it becomes probable in Sector 7 (FS < 1.30), and remains unlikely in Sector 8 (FS > 1.50). Due to the necessity of adopting several modelling assumptions, the results should be interpreted primarily in qualitative terms. The outcomes of this research provide a critical basis for assessing the stability of rock slopes within Wojciech Bednarski Park and support decision-making processes related to its planned revitalisation. Full article
Show Figures

Figure 1

20 pages, 16550 KB  
Article
Non-Negligible Influence of Gravel Content in Slip Zone Soil: From Creep Characteristics to Landslide Response Patterns
by Bo Xu, Xinhai Zhao, Jin Yuan, Shun Dong, Xuhuang Du, Longwei Yang, Bo Peng and Qinwen Tan
Water 2025, 17(12), 1726; https://doi.org/10.3390/w17121726 - 7 Jun 2025
Viewed by 863
Abstract
The creep mechanical behavior of the slip zone soil is distinctive and assumes a vital role in the identification and prediction of landslide evolution, but the rock content and structure dictate its creep properties. This study examines the Outang landslide in the reservoir [...] Read more.
The creep mechanical behavior of the slip zone soil is distinctive and assumes a vital role in the identification and prediction of landslide evolution, but the rock content and structure dictate its creep properties. This study examines the Outang landslide in the reservoir region of middle Yangtze River, where the slip zone soil shows considerable variability in particle size distribution, with gravel content varying between 35% and 55%. To investigate the creep characteristics of the slip zone soil, large-scale direct shear creep tests were conducted, focusing on the variations in peak strength and long-term strength under different gravel content conditions. PFC3D numerical simulations were subsequently performed to elucidate the internal mechanisms connecting gravel content, microstructure, and macroscopic mechanical strength. A three-dimensional continuous-discrete coupled model was built to investigate the influence of gravel content on landslide deformation features, accounting for fluctuations in gravel content. The numerical findings indicate that gravel content markedly affects the displacement and deformation characteristics of the landslide. As the gravel concentration rises, landslide displacement progressively diminishes, with elevated gravel content enhancing the structural integrity of the landslide mass. This study underscores gravel content as a pivotal element in landslide deformation and reinforces its significance in assessing landslide stability and forecasting. Full article
Show Figures

Figure 1

16 pages, 3388 KB  
Article
The Establishment of a Rock Creep Model by Using Creep Bodies via an Improved Gene Expression Programming Algorithm
by Pingyang Fan, Junhua Chen, Chuankun Qiu, Junwen Chen, Shan Gao, Jiqing Hou and Min Wang
Appl. Sci. 2025, 15(10), 5527; https://doi.org/10.3390/app15105527 - 15 May 2025
Cited by 1 | Viewed by 691
Abstract
Rock creep commonly appears in rock mass engineering, and it should be paid appropriate attention. In this paper, studies on creep constitutive models of rocks were reviewed, and it was found that the types of creep constitutive models can generally be classified into [...] Read more.
Rock creep commonly appears in rock mass engineering, and it should be paid appropriate attention. In this paper, studies on creep constitutive models of rocks were reviewed, and it was found that the types of creep constitutive models can generally be classified into two categories: theoretical formulas and combinations of creep bodies. Moreover, the combination of creep bodies has been used mainly for describing the creep characteristics of rocks; however, creep constitutive models have been constructed based on the subjectivity of studies in most cases, which is not objective or scientific enough. To avoid the subjectivity of establishing the creep constitutive model by using creep bodies, improved gene expression programming was utilized to construct the creep model. To verify the validity of the proposed method, two examples were given, and the corresponding creep constitutive models were obtained. The calculation results indicated that the proposed improved gene expression programming can be applied to establish a creep constitutive model in practice. Full article
Show Figures

Figure 1

18 pages, 3776 KB  
Article
A Viscoelastic-Plastic Creep Model for Initial Damaged Coal Sample Affected by Loading Rate
by Peng Huang, Yimei Wei, Meng Li, Erkan Topal, Xinyong Teng and Wei Wang
Appl. Sci. 2025, 15(10), 5265; https://doi.org/10.3390/app15105265 - 8 May 2025
Cited by 3 | Viewed by 914
Abstract
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic [...] Read more.
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic loading effects triggered by adjacent mining activities (manifested as medium strain-rate loading) further exacerbate damage evolution and significantly influence creep characteristics. In this study, coal samples with identical initial damage were prepared, and graded loading creep tests were conducted at rates of 0.005 mm·s−1 (50 microstrains·s−1), 0.01 mm·s−1 (100 microstrains·s−1), 0.05 mm·s−1 (500 microstrains·s−1), and 0.1 mm·s−1 (1000 microstrains·s−1) to systematically analyze the coupled effects of loading rate on creep behavior. Experimental results demonstrate that increased loading rates markedly shorten creep duration, with damage rates during the acceleration phase showing nonlinear surges (e.g., abrupt instability at 0.1 mm·s−1 (1000 microstrains·s−1)). Based on experimental data, an integer-order viscoelastic-plastic creep model incorporating stress-dependent viscosity coefficients and damage correlation functions was developed, fully characterizing four behaviors stages: instantaneous deformation, deceleration, steady-state, and accelerated creep. Optimized via the Levenberg–Marquardt algorithm, the model achieved correlation coefficients exceeding 0.96, validating its accuracy. This model clarifies the impact mechanisms of loading rates on the long-term mechanical behavior of initially damaged coal samples, providing theoretical support for stability assessment and hazard prevention in underground engineering. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

30 pages, 3561 KB  
Review
Physical and Mechanical Properties and Constitutive Model of Rock Mass Under THMC Coupling: A Comprehensive Review
by Jianxiu Wang, Bilal Ahmed, Jian Huang, Xingzhong Nong, Rui Xiao, Naveed Sarwar Abbasi, Sharif Nyanzi Alidekyi and Huboqiang Li
Appl. Sci. 2025, 15(4), 2230; https://doi.org/10.3390/app15042230 - 19 Feb 2025
Cited by 4 | Viewed by 3800
Abstract
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and [...] Read more.
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and underground space development are highly complex. In such settings, rocks are put through thermal-hydrological-mechanical-chemical (THMC) coupling effects under peak temperatures, strong osmotic pressures, extreme stress, and chemically reactive environments. The interaction between these fields is not a simple additive process but rather a dynamic interplay where each field influences the others. This paper provides a comprehensive analysis of fragmentation evolution, deformation mechanics, mechanical constitutive models, and the construction of coupling models under multi-field interactions. Based on rock strength theory, the constitutive models for both multi-field coupling and creep behavior in rocks are developed. The research focus on multi-field coupling varies across industries, reflecting the diverse needs of sectors such as mineral resource extraction, oil and gas production, geothermal energy, water conservancy, hydropower engineering, permafrost engineering, subsurface construction, nuclear waste disposal, and deep energy storage. The coupling of intense stress, fluid flow, temperature, and chemical factors not only triggers interactions between these fields but also alters the physical and mechanical properties of the rocks themselves. Investigating the mechanical behavior of rocks under these conditions is essential for averting accidents and assuring the soundness of engineering projects. Eventually, we discuss vital challenges and future directions in multi-field coupling research, providing valuable insights for engineering applications and addressing allied issues. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

23 pages, 22633 KB  
Article
The Toppling Deformation and Failure Criteria of a Steep Bedding Rock Slope—The Case of a Bank Slope at the Duonuo Hydropower Station
by Tiantao Li, Xuan Li, Kaihong Wei, Jian Guo, Xi Heng, Jing Yuan, Weiling Ran and Xiangjun Pei
Water 2025, 17(4), 594; https://doi.org/10.3390/w17040594 - 18 Feb 2025
Cited by 1 | Viewed by 1149
Abstract
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the [...] Read more.
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the toppling deformable body while considering the excavation process. Based on the deformation and failure phenomena observed in the bottom friction test model, along with the displacement curves at key points, the deformation process in steep bedding rock slopes can be divided into the following five distinct stages: the initial phase, the unloading–rebound phase, the tensile failure phase, the bending creep phase, and the bending–toppling damage phase. To evaluate the stability, a new constitutive model of the nonlinear viscoelastic–plastic rheology of rock masses was developed. This model is based on a nonlinear function derived from analyzing the creep test data of rock masses under fractional loading. Furthermore, a mechanical equilibrium differential equation for rock slabs was formulated to quantitatively describe the aging deformation and failure processes of slopes with delayed instability. Finally, a stability criterion and a quantitative evaluation model for toppling deformation slopes that considered time-varying factors were established. The stability of the model was calculated using a hydropower station slope case, and the results were found to be in good agreement with the actual situation. Full article
Show Figures

Figure 1

22 pages, 10705 KB  
Article
The Anisotropic Time-Dependent Properties and Constitutive Model Analysis of Carbonaceous Slate with Different Foliation Angles
by Yuanguang Zhu, Xuanyao Wang, Bin Liu and Haoyuan Xue
Appl. Sci. 2025, 15(1), 236; https://doi.org/10.3390/app15010236 - 30 Dec 2024
Cited by 1 | Viewed by 1153
Abstract
In tunnel construction in western China, a vast amount of carbonaceous slate is encountered. High in situ stress and foliation structures cause the rock mass to exhibit pronounced anisotropic creep, readily inducing a series of engineering disasters like collapses and lining cracks. Investigating [...] Read more.
In tunnel construction in western China, a vast amount of carbonaceous slate is encountered. High in situ stress and foliation structures cause the rock mass to exhibit pronounced anisotropic creep, readily inducing a series of engineering disasters like collapses and lining cracks. Investigating the anisotropic time-dependent characteristics of carbonaceous slate is beneficial to the long-term stability of tunnel construction and operation. In view of this, carbonaceous slate specimens with different angles, β, between the foliation plane and loading direction were studied using a graded loading method through uniaxial compression creep tests. The results show that the instantaneous axial strain, εi, the axial creep strain, εc, the duration time of decelerating creep stage, td, and the steady creep strain rate, ε˙s, increased with the rise in the loading ratio, k. Their variations followed a power law relationship, with the R2 (Coefficient of Determination) values all exceeding 0.95. The value of ε˙s was observed to be less than 1.5 × 10−4/h when β < 45°, while it was found to exceed 1.5 × 10−4/h in the cases of β45°. The long-term strength, σL, of carbonaceous slate showed a U-shaped pattern with the variation in β. The maximum σL occurred at β = 90° and the minimum was observed at β = 15°. A fractional nonlinear creep model (FNC model) was developed. The sensitivity analysis reveals that the larger the fractional order n is, the td and ε˙s increase. η2 and E2 primarily affect the decelerated creep stage, while the ε˙s exhibits a rapid increase with the rise of η1. To further validate the FNC model, a comparison is made with the traditional Nishihara model. The R2 of the FNC model is larger than 0.965, which is higher than that of the Nishihara model (R2 ≤ 0.911). The FNC model can effectively cope with the impact of the sudden increase in strain and well describe the characteristics of the decelerating, steady-state, and accelerating creep stages at any stress level and any angle. The results provide a reference for the study of the creep mechanism of layered rocks. Full article
Show Figures

Figure 1

23 pages, 7054 KB  
Article
Study on the Performance of Modified Qingchuan Rock/Rubber Asphalt
by Wuan Li, Yukun Chen, Tengteng Guo, Zhenxia Li and Xiaoxiao Jiang
Coatings 2024, 14(10), 1246; https://doi.org/10.3390/coatings14101246 - 30 Sep 2024
Cited by 1 | Viewed by 1222
Abstract
This paper developed a new environmentally friendly composite modified asphalt material and studied the composite modification of Qingchuan rock asphalt (QRA) and waste tire rubber powder (RP) was studied in this paper. QRA/RP composite modified asphalt was prepared by adding these two materials [...] Read more.
This paper developed a new environmentally friendly composite modified asphalt material and studied the composite modification of Qingchuan rock asphalt (QRA) and waste tire rubber powder (RP) was studied in this paper. QRA/RP composite modified asphalt was prepared by adding these two materials as modifiers into matrix asphalt and compared with matrix asphalt and QRA modified asphalt. The basic properties of asphalt before and after aging were evaluated by the rotating thin film oven test. The high-temperature performance and permanent deformation resistance at different temperatures and frequencies were analyzed by the dynamic shear rheological test. The bending creep stiffness test was used to evaluate the low-temperature performance. In addition, the microstructure and modification mechanism of composite-modified asphalt were analyzed by scanning electron microscopy and infrared spectroscopy. The results show that QRA-modified asphalt is superior to matrix asphalt in terms of mass loss, viscosity ratio, and residual penetration, while QRA/RP composite-modified asphalt is further improved on this basis, QRA/RP composite modified asphalt can effectively improve the high and low temperature performance of asphalt.. Although the addition of RP is mainly based on physical modification, it also causes weak chemical reactions and enhances the adhesion of asphalt. The interaction between Qingchuan Rock asphalt and rubber powder significantly improves the overall stability of asphalt structure. Full article
Show Figures

Figure 1

Back to TopTop