Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mannosylerythritol lipid-A (MEL-A)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1706 KiB  
Article
Interactions between Mannosylerythritol Lipid-A and Heat-Induced Soy Glycinin Aggregates: Physical and Chemical Characteristics, Functional Properties, and Structural Effects
by Siyu Liu, Tianyu Wei, Hongyun Lu, Xiayu Liu, Ying Shi and Qihe Chen
Molecules 2022, 27(21), 7393; https://doi.org/10.3390/molecules27217393 - 31 Oct 2022
Cited by 5 | Viewed by 2026
Abstract
Protein-surfactant interactions have a significant influence on food functionality, which has attracted increasing attention. Herein, the effect of glycolipid mannosylerythritol lipid-A (MEL-A) on the heat-induced soy glycinin (11S) aggregates was investigated by measuring the structure, binding properties, interfacial behaviors, and emulsification characteristics of [...] Read more.
Protein-surfactant interactions have a significant influence on food functionality, which has attracted increasing attention. Herein, the effect of glycolipid mannosylerythritol lipid-A (MEL-A) on the heat-induced soy glycinin (11S) aggregates was investigated by measuring the structure, binding properties, interfacial behaviors, and emulsification characteristics of the aggregates. The results showed that MEL-A led to a decrease in the surface tension, viscoelasticity, and foaming ability of the 11S aggregates. In addition, MEL-A with a concentration above critical micelle concentration (CMC) reduced the random aggregation of 11S protein after heat treatment, thus facilitating the formation of self-assembling core-shell particles composed of a core of 11S aggregates covered by MEL-A shells. Infrared spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry also confirmed that the interaction forces between MEL-A and 11S were driven by hydrophobic interactions between the exposed hydrophobic groups of the protein and the fatty acid chains or acetyl groups of MEL-A, as well as the hydrogen bonding between mannosyl-D-erythritol groups of MEL-A and amino acids of 11S. The findings of this study indicated that such molecular interactions are responsible for the change in surface behavior and the enhancement of foaming stability and emulsifying property of 11S aggregates upon heat treatment. Full article
Show Figures

Graphical abstract

17 pages, 2700 KiB  
Article
Synthesis, Characterization of Liposomes Modified with Biosurfactant MEL-A Loading Betulinic Acid and Its Anticancer Effect in HepG2 Cell
by Qin Shu, Jianan Wu and Qihe Chen
Molecules 2019, 24(21), 3939; https://doi.org/10.3390/molecules24213939 - 31 Oct 2019
Cited by 41 | Viewed by 3902
Abstract
As a novel natural compound delivery system, liposomes are capable of incorporating lipophilic bioactive compounds with enhanced compound solubility, stability and bioavailability, and have been successfully translated into real-time clinical applications. To construct the soy phosphatidylcholine (SPC)–cholesterol (Chol) liposome system, the optimal formulation [...] Read more.
As a novel natural compound delivery system, liposomes are capable of incorporating lipophilic bioactive compounds with enhanced compound solubility, stability and bioavailability, and have been successfully translated into real-time clinical applications. To construct the soy phosphatidylcholine (SPC)–cholesterol (Chol) liposome system, the optimal formulation was investigated as 3:1 of SPC to Chol, 10% mannosylerythritol lipid-A (MEL-A) and 1% betulinic acid. Results show that liposomes with or without betulinic acid or MEL-A are able to inhibit the proliferation of HepG2 cells with a dose-effect relation remarkably. In addition, the modification of MEL-A in liposomes can significantly promote cell apoptosis and strengthen the destruction of mitochondrial membrane potential in HepG2 cells. Liposomes containing MEL-A and betulinic acid have exhibited excellent anticancer activity, which provide factual basis for the development of MEL-A in the anti-cancer applications. These results provide a design thought to develop delivery liposome systems carrying betulinic acid with enhanced functional and pharmaceutical attributes. Full article
Show Figures

Figure 1

Back to TopTop