Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mannooligosaccharides (MOS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3298 KB  
Article
Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal
by Amy S. Anderson, Lithalethu Mkabayi, Samkelo Malgas, Naveen Kango and Brett I. Pletschke
Agronomy 2022, 12(12), 2993; https://doi.org/10.3390/agronomy12122993 - 28 Nov 2022
Cited by 8 | Viewed by 2563
Abstract
An Aspergillus niger endo-1,4-β-mannanase, Man26A, was confirmed by FTIR and XRD to be immobilised on glutaraldehyde-activated chitosan nanoparticles via covalent bonding. The immobilisation (%) and activity yields (%) were 82.25% and 20.75%, respectively. The biochemical properties (pH, temperature optima, and stability) were then [...] Read more.
An Aspergillus niger endo-1,4-β-mannanase, Man26A, was confirmed by FTIR and XRD to be immobilised on glutaraldehyde-activated chitosan nanoparticles via covalent bonding. The immobilisation (%) and activity yields (%) were 82.25% and 20.75%, respectively. The biochemical properties (pH, temperature optima, and stability) were then comparatively evaluated for both the free and immobilised Man26A. The optimal activity of Man26A shifted to a lower pH after immobilisation (pH 2.0–3.0, from pH 5 for the free enzyme), with the optimum temperature remaining unchanged (60 °C). The two enzymes exhibited identical thermal stability, maintaining 100% activity for the first 6 h at 55 °C. Substrate-specific kinetic analysis showed that the two enzymes had similar affinities towards locust bean gum (LBG) with varied Vmax values. In contrast, they showed various affinities towards soybean meal (SBM) and similar Vmax values. The immobilised enzyme was then employed in the enhancement of the functional feed/prebiotic properties of SBM from poultry feed, increasing mannooligosaccharides (MOS) quantities. The SBM main hydrolysis products were mannobiose (M2) and mannose (M1). The SBM-produced sugars could be utilised as a carbon source by probiotic bacteria; Streptococcus thermophilus, Bacillus subtilis, and Lactobacillus bulgaricus. The results indicate that the immobilised enzyme has the potential for use in the sustainable and cost-effective production of prebiotic MOS from agricultural biomass. Full article
(This article belongs to the Special Issue Pretreatment and Bioconversion of Crop Residues II)
Show Figures

Figure 1

16 pages, 972 KB  
Review
Enzymatic Conversion of Mannan-Rich Plant Waste Biomass into Prebiotic Mannooligosaccharides
by Nosipho Hlalukana, Mihle Magengelele, Samkelo Malgas and Brett Ivan Pletschke
Foods 2021, 10(9), 2010; https://doi.org/10.3390/foods10092010 - 26 Aug 2021
Cited by 30 | Viewed by 7056
Abstract
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered “wastes”, which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). [...] Read more.
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered “wastes”, which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan. Mannan has a main backbone consisting of β-1,4-linked mannose residues (which may be interspersed by glucose residues) with galactose substituents. Endo-β-1,4-mannanases cleave the mannan backbone at cleavage sites determined by the substitution pattern and thus give rise to different MOS products. These MOS products serve as prebiotics to stimulate various types of intestinal bacteria and cause them to produce fermentation products in different parts of the gastrointestinal tract which benefit the host. This article reviews recent advances in understanding the exploitation of plant residual biomass via the enzymatic production and characterization of MOS, and the influence of MOS on beneficial gut microbiota and their biological effects (i.e., immune modulation and lipidemic effects) as observed on human and animal health. Full article
(This article belongs to the Special Issue Food Ingredients and Gut Microbiota)
Show Figures

Figure 1

10 pages, 1071 KB  
Communication
Growth-Promoting Effect of Cava Lees on Lactic Acid Bacteria Strains: A Potential Revalorization Strategy of a Winery By-Product
by Salvador Hernández-Macias, Oriol Comas-Basté, Anna Jofré, Sara Bover-Cid, M. Luz Latorre-Moratalla and M. Carmen Vidal-Carou
Foods 2021, 10(7), 1636; https://doi.org/10.3390/foods10071636 - 15 Jul 2021
Cited by 17 | Viewed by 3791
Abstract
The growing trend of circular economy has prompted the design of novel strategies for the revalorization of food industry by-products. Cava lees, a winery by-product consisting of non-viable cells of Saccharomyces cerevisiae rich in β-glucans and mannan-oligosaccharides, can be used as a microbial [...] Read more.
The growing trend of circular economy has prompted the design of novel strategies for the revalorization of food industry by-products. Cava lees, a winery by-product consisting of non-viable cells of Saccharomyces cerevisiae rich in β-glucans and mannan-oligosaccharides, can be used as a microbial growth promoter, with potential food safety and health applications. The aim of this study was to assess in vitro the effect of cava lees on the growth of 21 strains of lactic acid bacteria (LAB) species commonly used as starter cultures and/or probiotics. Firstly, 5% of cava lees was selected as the most effective amount for enhancing microbial counts. After screening different LAB, statistically significantly (p < 0.05) higher microbial counts were found in 12 strains as a consequence of cava lees supplementation. Moreover, a greater and faster reduction in pH was observed in most of these strains. The growth-promoting effects of cava lees on LAB strains supports the potential revalorization of this winery by-product, either to improve the safety of fermented products or as a health-promoting prebiotic that may be selectively fermented by probiotic species. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

Back to TopTop