Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan Nanoparticles
2.3. Immobilisation of Man26A on Chitosan Nanoparticles
2.4. Bio-Physical Characterisation of Man26A-Immobilised Chitosan Nanoparticles
2.4.1. FTIR Analysis
2.4.2. XRD Analysis
2.5. Determination of Enzyme Activity and Protein Concentration
2.5.1. Protein Concentration
2.5.2. Determination of Reducing Sugars Concentration
2.5.3. Endo-1,4-β-mannanase Activity Assay with LBG
2.5.4. Endo-1,4-β-mannanase Activity Assay with SBM
2.6. Biochemical Characterisation of Free and Immobilised Man26A
2.6.1. Temperature Optima
2.6.2. Thermostability Determination
2.6.3. PH Optima
2.6.4. Kinetic Parameters of Immobilised and Free Endo-1,4-β-mannanase with LBG
2.7. Reusability of the Immobilised Man26A
2.8. HPLC Analysis of MOS Generated from SBM
2.9. Prebiotic Effects of SBM-Derived MOS
2.9.1. Bacterial Culture
2.9.2. Effects of MOS on Cell Viability
2.10. Statistical Analysis
3. Results
3.1. Enzyme Immobilisation
3.2. Bio-Physical Characterisation of Immobilised Chitosan Nanoparticles
3.2.1. FTIR Spectroscopy
3.2.2. X-ray Diffraction Analysis
3.3. Biochemical Characterisation of Free and Immobilised Man26A
3.3.1. Effect of Temperature and pH on Enzyme Activity
3.3.2. Kinetic Parameters
3.4. Reusability of the Immobilised Man26A
3.5. Utilisation of Immobilised Man26A on MOS Generation from SBM
3.6. Prebiotic Effects of SBM-Derived MOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jana, U.K.; Kango, N.; Pletschke, B.I. Hemicellulose-derived oligosaccharides: Emerging prebiotics in disease alleviation. Front. Nutr. 2021, 8, 670817. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, A.; Butt, M.S.; Afzaal, M.; van Baak, M.; Nadeem, M.T.; Shahid, M.Z. Prebiotics, gut microbiota and metabolic risks: Unveiling the relationship. J. Funct. Foods 2015, 17, 189–201. [Google Scholar] [CrossRef]
- Yu, X.; Yin, J.; Li, L.; Luan, C.; Zhang, J.; Zhao, C.; Li, S. Prebiotic potential of Xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus. Microbiol. Biotechnol. 2015, 25, 1084–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlalukana, N.; Magengelele, M.; Malgas, S.; Pletschke, B.I. Enzymatic conversion of mannan-rich plant waste biomass into prebiotic mannooligosaccharides. Foods 2021, 10, 2010. [Google Scholar] [CrossRef]
- Xiao, R.; Power, R.F.; Mallonee, D.; Rout, K.; Spangler, L.; Pescatore, A.J.; Cantor, A.H.; Ao, T.; Pierce, J.L.; Dawson, K.A. Effects of yeast cell wall-derived mannanoligosaccharides on jejunal gene expression in young broiler chickens. Poult. Sci. J. 2012, 91, 1660–1669. [Google Scholar] [CrossRef]
- Che, T.; Song, M.; Liu, Y.; Johnson, R.; Kelley, K.; Van Alstine, W.; Dawson, K.; Pettigrew, J. Mannan oligosaccharide increases serum concentrations of antibodies and inflammatory mediators in weanling pigs experimentally infected with porcine re-productive and respiratory syndrome virus. Anim. Sci. J. 2012, 90, 2784–2793. [Google Scholar] [CrossRef]
- Garcia Diaz, T.; Ferriani Branco, A.; Jacovaci, F.A.; Cabreira Jobim, C.; Pratti Daniel, J.L.; Iank Bueno, A.V.; Gonçalves Ribeiro, M. Use of live yeast and mannanoligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE 2018, 13, e0207127. [Google Scholar]
- Malgas, S.; van Dyk, S.J.; Pletschke, B.I. β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism—A key factor for the hydrolysis of galactomannan substrates. Enzym. Microb. Technol. 2015, 70, 1–8. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Ramakrishna, G.; Srivastava, H.; Gaikwad, K. A comprehensive review on leguminous galactomannans: Structural analysis, functional properties, biosynthesis process and industrial applications. Crit. Rev. Food Sci. Nutr. 2020, 62, 443–465. [Google Scholar] [CrossRef]
- Hsiao, H.Y.; Anderson, D.M.; Dalet, N.M. Levels of β-mannan in soybean meal. Poult. Sci. J. 2006, 85, 1430–1432. [Google Scholar] [CrossRef]
- Caldas, J.V.; Vignale, K.; Boonsinchai, N.; Wang, J.; Putsakum, M.; England, J.A.; Coon, C.N. The effect of β-mannanase on nutrient utilization and blood parameters in chicks fed diets containing soybean meal and guar gum. Poult. Sci. J. 2018, 97, 2807–2817. [Google Scholar] [CrossRef] [PubMed]
- Shastak, Y.; Ader, P.; Feuerstein, D.; Ruehle, R.; Matuschek, M. ß-Mannan and mannanase in poultry nutrition. Poult. Sci. J. 2015, 71, 161–174. [Google Scholar] [CrossRef]
- Saeed, M.; Ayasan, T.; Alagawany, M.; El-Hack, M.E.A.; Abdel-Latif, M.A.; Patra, A.K. The role of ß-mannanase (Hemicell) in improving poultry productivity, health and environment. Braz. J. Poult. Sci. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- White, D.; Adhikari, R.; Wang, J.; Chen, C.; Lee, J.H.; Kim, W.K. Effects of dietary protein, energy and β-mannanase on laying performance, egg quality, and ileal amino acid digestibility in laying hens. Poult. Sci. J. 2021, 100, 101312. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, G.; Arya, S.K. Mannans: An overview of properties and application in food products. Int. J. Biol. Macromol. 2018, 119, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Dhillon, A.; Goyal, A. Insights into structure and reaction mechanism of β-mannanases. Curr. Protein Pept. Sci. 2018, 19, 34–47. [Google Scholar] [CrossRef]
- Jana, U.K.; Kango, N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int. J. Biol. Macromol. 2020, 149, 931–940. [Google Scholar] [CrossRef]
- Suryawanshi, R.K.; Kango, N. Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chem. 2021, 334, 127428. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Raghuvanshi, S.; Gupta, R. Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Pept. Lett. 2010, 17, 1412–1416. [Google Scholar] [CrossRef]
- Kumar, G.; Mudhoo, A.; Sivagurunathan, P.; Nagarajan, D.; Ghimire, A.; Lay, C.-H.; Lin, C.-Y.; Lee, D.-J.; Chang, J.-S. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour. Technol. 2016, 219, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.L.; Kumar, S.; Das, A.; Randhawa, J.S.; Chamundeeswari, M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett. 2020, 18, 315–323. [Google Scholar] [CrossRef]
- Nunes, Y.L.; de Menezes, F.L.; de Sousa, I.G.; Cavalcante, A.L.G.; Cavalcante, F.T.T.; da Silva Moreira, K.; de Oliveira, A.L.B.; Mota, G.F.; da Silva Souza, J.E.; de Aguiar Falcão, I.R.; et al. Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int. J. Biol. Macromol. 2021, 181, 1124–1170. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 2014, 4, 1583–1600. [Google Scholar] [CrossRef] [Green Version]
- Elchinger, P.H.; Delattre, C.; Faure, S.; Roy, O.; Badel, S.; Bernardi, T.; Taillefumier, C.; Michaud, P. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int. J. Biol. Macromol. 2015, 72, 1063–1068. [Google Scholar] [CrossRef]
- Bonazza, H.L.; Manzo, R.M.; dos Santos, J.C.S.; Mammarella, E.J. Operational and thermal stability analysis of Thermomyces lanuginosus lipase covalently immobilized onto modified chitosan supports. Appl. Biochem. Biotechnol. 2018, 184, 182–196. [Google Scholar] [CrossRef]
- Patel, K.K.; Tripathi, M.; Pandey, N.; Agrawal, A.K.; Gade, S.; Anjum, M.M.; Tilak, R.; Singh, S. Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int. J. Pharm. 2019, 563, 30–42. [Google Scholar] [CrossRef]
- Mohapatra, B.R. Characterization of β-mannanase extracted from a novel Streptomyces species Alg-S25 immobilized on chitosan nanoparticles. Biotechnol. Biotechnol. Equip. 2021, 35, 150–161. [Google Scholar] [CrossRef]
- Blibech, M.; Chaari, F.; Bhiri, F.; Dammak, I.; Ghorbel, R.E.; Chaabouni, S.E. Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase. J. Mol. Catal. B Enzym. 2011, 73, 111–115. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Britton, H.T.S.; Robinson, R.A. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 1931, 1, 456–1462. [Google Scholar] [CrossRef]
- Magengelele, M.; Hlalukana, N.; Malgas, S.; Rose, S.H.; van Zyl, W.H.; Pletschke, B.I. Production and in vitro evaluation of prebiotic manno-oligosaccharides prepared with a recombinant Aspergillus niger endo-mannanase, Man26A. Enzym. Microb. Technol. 2021, 150, 109893. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnadari, F.; Xue, Y.; Zhou, L.; Hamed, Y.S.; Taha, M.; Foda, M.F. Immobilization of β-glucosidase from Thermatoga maritima on chitin-functionalized magnetic nanoparticle via a novel thermostable chitin-binding domain. Sci. Rep. 2020, 10, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baroudi, A.; García-Payo, C.; Khayet, M. Structural, mechanical, and transport properties of electron beam-irradiated chitosan membranes at different doses. Polym. J. 2018, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Mahamed, S.A.; Al-Malki, A.L.; Kumosani, T.A. Horseradish peroxidase and chitosan: Activation, immobilization and comparative results. Int. J. Biol. Macromol. 2013, 60, 295–300. [Google Scholar] [CrossRef]
- Gűr, S.D.; İdil, N.; Aksöz, N. Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads. Appl. Biochem. Biotechnol. 2018, 184, 538–552. [Google Scholar] [CrossRef]
- Klein, M.P.; Nunes, M.R.; Rodigues, R.C.; Benvenutti, E.V.; Costa, T.M.H.; Hertz, P.F.; Ninow, J.L. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: Advantages and disadvantages of macro and nanoparticles. Biomacromolecules 2012, 13, 2456–2464. [Google Scholar] [CrossRef]
- Collins, S.E.; Lassalle, V.; Ferreira, M.L. FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM, IM and chitosan-immobilized RML. J. Mol. Catal. B Enzym. 2011, 72, 220–228. [Google Scholar] [CrossRef]
- Belowicha, M.E.; Stoddart, J.F. Dynamic Imine Chemistry. Chem. Soc. Rev. 2012, 41, 2012. [Google Scholar] [CrossRef] [PubMed]
- Ciaccia, M.; Cacciapaglia, R.; Mencarelli, P.; Manolini, L.; Stefano, S.D. Fast Transimination in organic solvents in the absence of proton and metal catalysts. A key to iminemetathesis catalyzed by primary amines under mind conditions. Chem. Sci. 2013, 5, 2253–2261. [Google Scholar] [CrossRef]
- Dai, W.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.; Schlüter, A.D.; Zhang, W. Synthesis of a Two-Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface. Angew. Chem. Int. Ed. 2016, 55, 213–217. [Google Scholar] [CrossRef]
- Morsy, M.; Mostafa, K.M.; Amyn, H.A.M.; El-Ebissy, A.A.H.; Salah, A.M.; Youssef, M.A. Synthesis and characterization of free dryer chitosan nanoparticles as multifunctional eco-friendly finish for fabricating easy care and antibacterial cotton textiles. Egypt. J. Chem. 2019, 62, 1277–1293. [Google Scholar]
- Kumar, S.; Koh, J. Physiochemical, Optical and biological activity of chitosan-chrome derivative for biomedical applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan, J.; Trilleras, J.; Zapata, P.A.; Arana, V.A.; Grande-Tovar, C.D. Optimization of chitosan glutaraldehyde-crosslinked beads for reactive blue 4 anionic dye removal using a surface response methodology. Life 2021, 11, 85. [Google Scholar] [CrossRef]
- Garnica-Palafox, I.M.; Sánchez-Arévalo, F.M. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr. Polym. 2016, 151, 1073–1081. [Google Scholar] [CrossRef]
- Li, B.; Shan, C.L.; Zhou, Q.; Fang, Y.; Wang, Y.L.; Xu, F.; Han, L.R.; Ibrahim, M.; Guo, L.B.; Xie, G.L.; et al. Synthesis, characterisation, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs 2013, 11, 1534–1552. [Google Scholar] [CrossRef] [Green Version]
- Sadaqat, B.; Sha, C.; Dar, M.A.; Dhanavade, M.J.; Sonawane, K.D.; Mohamed, H.; Shao, W.; Song, Y. Modifying thermostability and reusability by immobilization on glutaraldehyde cross-linked chitosan beads. Biomolecules 2022, 12, 999. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Sonmez, Z. Purification of an endo-beta-1,4-mannanase from Clitocybe geotropa and immobilisation on chitosan-coated magnetite nanoparticles: Application for fruit juices. Dig. J. Nanomater. Biostruct. 2016, 11, 685–697. [Google Scholar]
- Rebroš, M.; Rosenberg, M.; Mlichova, Z.; Kristofikova, L. Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsule. Food Chem. 2007, 102, 784–787. [Google Scholar] [CrossRef]
- Dhiman, S.; Srivastava, B.; Singh, G.; Khatri, M.; Arya, S.K. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: An easy and cost effective approach for the improvement of enzyme properties. Int. J. Biol. Macromol. 2019, 156, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Suhaibani, A.A.; Bacha, A.B.; Alonazi, M.; Bhat, R.S.; El-Ansary, A. Testing the combined effects of probiotics and prebiotics against neurotoxic effects of propionic acid orally administered to rat pups. Food Sci. Nutr. 2021, 9, 4440–4451. [Google Scholar] [CrossRef] [PubMed]
- Ajdić, D.; Pham, V.T.T. Global transcription analysis of Streptococcus mutans sugar transporters using microarrays. J. Bacteriol. 2007, 189, 5049–5059. [Google Scholar] [CrossRef] [Green Version]
- Licandro-Seraut, H.; Scornec, H.; Pédron, T.; Cavin, J.F.; Sansonetti, P. Functional genomics of Lactobacillus casei establishment in the gut. Proc. Natl. Acad. Sci. USA 2014, 111, 3101–3109. [Google Scholar] [CrossRef]
Substrate | Kinetic Parameters | Immobilised Enzyme | Free Enzyme |
---|---|---|---|
LBG | Vmax | 12.10 | 55.36 |
Km (mg/mL) | 7.74 | 8.44 | |
kcat (s−1) | 322.6 | 5536.0 | |
kcat/Km (s−1 mg−1 mL) | 41.67 | 655.85 | |
SBM | Vmax | 0.02672 | 0.03099 |
Km (mg/mL) | 10.26 | 53.43 | |
kcat (s−1) | 1.006 | 0.6199 | |
kcat/Km (s−1 mg−1 mL) | 0.0981 | 0.0116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, A.S.; Mkabayi, L.; Malgas, S.; Kango, N.; Pletschke, B.I. Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal. Agronomy 2022, 12, 2993. https://doi.org/10.3390/agronomy12122993
Anderson AS, Mkabayi L, Malgas S, Kango N, Pletschke BI. Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal. Agronomy. 2022; 12(12):2993. https://doi.org/10.3390/agronomy12122993
Chicago/Turabian StyleAnderson, Amy S., Lithalethu Mkabayi, Samkelo Malgas, Naveen Kango, and Brett I. Pletschke. 2022. "Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal" Agronomy 12, no. 12: 2993. https://doi.org/10.3390/agronomy12122993
APA StyleAnderson, A. S., Mkabayi, L., Malgas, S., Kango, N., & Pletschke, B. I. (2022). Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal. Agronomy, 12(12), 2993. https://doi.org/10.3390/agronomy12122993