Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = manganese dioxide nanosheet probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3329 KB  
Article
Simultaneous Down-Regulation of Intracellular hTERT and GPX4 mRNA Using MnO2-Nanosheet Probes to Induce Cancer Cell Death
by Yixin Miao, Tao Zhou, Qinghong Ji and Min Hong
Sensors 2026, 26(3), 836; https://doi.org/10.3390/s26030836 - 27 Jan 2026
Abstract
Cancer remains a leading global cause of death, with conventional treatments often limited by toxicity and recurrence. Recent advances in gene therapy and nanodrug delivery offer new avenues for precision oncology. Human telomerase reverse transcriptase (hTERT) and glutathione peroxidase 4 (GPX4) are overexpressed [...] Read more.
Cancer remains a leading global cause of death, with conventional treatments often limited by toxicity and recurrence. Recent advances in gene therapy and nanodrug delivery offer new avenues for precision oncology. Human telomerase reverse transcriptase (hTERT) and glutathione peroxidase 4 (GPX4) are overexpressed in many cancers and linked to apoptosis and ferroptosis, respectively. Here, we developed a manganese dioxide nanosheet (MnO2-NS) probe co-loaded with antisense oligonucleotides targeting hTERT and GPX4 mRNA to synergistically down-regulate both genes and induce dual cell death pathways. The probe, assembled via adsorption of fluorescently labeled antisense strands, showed controllable release in the presence of glutathione (GSH). Cellular uptake and antisense release were confirmed in multiple cancer cell lines. The MnO2-NS probe significantly suppressed cell proliferation, outperforming single-target or carrier-only controls. Molecular analyses confirmed reduced hTERT and GPX4 expression, along with GSH depletion, ROS accumulation, and elevated lipid peroxidation—collectively promoting enhanced cancer cell death. In summary, this MnO2-NS-based co-delivery system enables synergistic gene silencing and GSH depletion, enhancing antitumor efficacy and providing a promising strategy for multifunctional nanotherapy. Full article
Show Figures

Figure 1

16 pages, 3069 KB  
Article
Glutathione-Capped CdTe Quantum Dots Based Sensors for Detection of H2O2 and Enrofloxacin in Foods Samples
by Shijie Li, Linqing Nie, Lin Han, Wenjun Wen, Junping Wang and Shuo Wang
Foods 2023, 12(1), 62; https://doi.org/10.3390/foods12010062 - 22 Dec 2022
Cited by 2 | Viewed by 2852
Abstract
Additives and antibiotic abuse during food production and processing are among the key factors affecting food safety. The efficient and rapid detection of hazardous substances in food is of crucial relevance to ensure food safety. In this study, a water-soluble quantum dot with [...] Read more.
Additives and antibiotic abuse during food production and processing are among the key factors affecting food safety. The efficient and rapid detection of hazardous substances in food is of crucial relevance to ensure food safety. In this study, a water-soluble quantum dot with glutathione as a ligand was synthesized as a fluorescent probe by hydrothermal method to achieve the detection and analysis of H2O2. The detection limits were 0.61 μM in water and 68 μM in milk. Meanwhile, it was used as a fluorescent donor probe and manganese dioxide nanosheets were used as a fluorescent acceptor probe in combination with an immunoassay platform to achieve the rapid detection and analysis of enrofloxacin (ENR) in a variety of foods with detection limits of 0.05–0.25 ng/mL in foods. The proposed systems provided new ideas for the construction of fluorescence sensors with high sensitivity. Full article
Show Figures

Figure 1

Back to TopTop