Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = man-made cellulose fibres (MMCF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3266 KiB  
Review
Recovery of N-Methylmorpholine N-Oxide (NMMO) in Lyocell Fibre Manufacturing Process
by Maria Sawiak, Bernardo A. Souto, Lelia Lawson, Joy Lo and Patricia I. Dolez
Fibers 2025, 13(1), 3; https://doi.org/10.3390/fib13010003 - 6 Jan 2025
Cited by 2 | Viewed by 4172
Abstract
The lyocell process offers an environmentally friendly strategy to produce regenerated cellulose fibre from biomass. However, it is critical to recover and reuse the N-methyl-morpholine-N-oxide (NMMO) solvent to maximize the environmental benefits and lower the cost. This article reviews NMMO [...] Read more.
The lyocell process offers an environmentally friendly strategy to produce regenerated cellulose fibre from biomass. However, it is critical to recover and reuse the N-methyl-morpholine-N-oxide (NMMO) solvent to maximize the environmental benefits and lower the cost. This article reviews NMMO recovery and characterization techniques at the lab and industrial scales, and methods to limit the NMMO degradation during the process. The article also presents the results of a pilot study investigating the recovery of NMMO from lyocell manmade cellulosic fibre (L-MMCF) manufacturing wastewater. The work described includes the development of a calibration curve for the determination of NMMO content in aqueous solutions using Fourier Transform Infrared Spectroscopy (FTIR). Successful NMMO recovery from the wastewater was achieved using a rotary evaporator: the final NMMO concentration was 50, i.e., ready for use in the lyocell process, and no NMMO degradation was observed. The knowledge in this paper will support advances in L-MMCF manufacturing and the reduction in textile environmental footprint. Full article
Show Figures

Figure 1

14 pages, 2651 KiB  
Article
Towards Sustainable Viscose-to-Viscose Production: Strategies for Recycling of Viscose Fibres
by Diana Carolina Reyes Forsberg, Jenny Bengtsson, Nadine Hollinger and Tahani Kaldéus
Sustainability 2024, 16(10), 4127; https://doi.org/10.3390/su16104127 - 15 May 2024
Cited by 6 | Viewed by 4415
Abstract
The potential for using discarded viscose textiles to produce high-quality viscose fibres is limited by the low molecular weight of the cellulose and its continued reduction in the recycling process. Herein, we present a straightforward approach of reprocessing discarded viscose textiles while achieving [...] Read more.
The potential for using discarded viscose textiles to produce high-quality viscose fibres is limited by the low molecular weight of the cellulose and its continued reduction in the recycling process. Herein, we present a straightforward approach of reprocessing discarded viscose textiles while achieving high-quality recycled viscose fibres. Discarded viscose textile was defibrated and centrifuged, and the resulting fibres were reprocessed under industrially relevant conditions. The produced viscose dope was fluid and resulted in viscose fibres with properties comparable to fibres made from commercial wood cellulose pulp (titer ~2 dtex; dry elongation ~16%, dry tenacity ~15 cN/tex). To explore the potential for a more environmentally friendly production process, the steeping step was performed twice (double-steeping), thereby producing a more homogeneous viscose dope. Through double-steeping, the consumption of carbon disulfide (CS2) could be reduced by 30.5%. The double-steeping method shows to be a suitable approach to reprocess discarded viscose textiles while reducing the environmental impact of the viscose process associated with the use of CS2. Our work demonstrates that discarded viscose textile has the potential to be part of a circular textile value chain. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

26 pages, 4116 KiB  
Review
Processes and Challenges for the Manufacturing of Lyocell Fibres with Alternative Agricultural Feedstocks
by Lelia Lawson, Madison Ford, Md. Saiful Hoque, Wade Chute, David C. Bressler and Patricia I. Dolez
Appl. Sci. 2023, 13(23), 12759; https://doi.org/10.3390/app132312759 - 28 Nov 2023
Cited by 6 | Viewed by 6571
Abstract
Lyocell man-made cellulosic fibres (L-MMCF) have been commercially available since the mid-1990’s, with the typical feedstock prepared from tree pulp or cotton linters. In recent years, there have been advancements in the utilisation of high alpha-cellulose agricultural biomass for L-MMCF feedstock. Industrial hemp [...] Read more.
Lyocell man-made cellulosic fibres (L-MMCF) have been commercially available since the mid-1990’s, with the typical feedstock prepared from tree pulp or cotton linters. In recent years, there have been advancements in the utilisation of high alpha-cellulose agricultural biomass for L-MMCF feedstock. Industrial hemp stalks offer a unique opportunity for L-MMCF since hemp is considered an environmentally conscious crop that can also help to bridge the gap in worldwide cellulose shortages; additionally, industrial hemp stalks are high in alpha-cellulose, making this an ideal feedstock for L-MMCF manufacturing. This review paper outlines the lyocell process in detail, including processes for preparation of feedstocks, pulp processing, removal of contaminants and nonessential plant components, pulp dissolution, dope preparation, and fibre spinning. Opportunities and challenges associated with the utilisation of industrial hemp stalks as an alternative feedstock are addressed through all steps of the manufacturing process. Incorporating alternative feedstock opens new perspectives for manufacturing sustainable L-MMCF. Full article
(This article belongs to the Special Issue Recent Trends in Biomass Materials)
Show Figures

Figure 1

16 pages, 2018 KiB  
Perspective
Cellulose Textiles from Hemp Biomass: Opportunities and Challenges
by Lelia Lawson, Lauren M. Degenstein, Bronwyn Bates, Wade Chute, Dan King and Patricia I. Dolez
Sustainability 2022, 14(22), 15337; https://doi.org/10.3390/su142215337 - 18 Nov 2022
Cited by 34 | Viewed by 9395
Abstract
Worldwide demand for man-made cellulosic fibres (MMCF) are increasing as availability of cotton fibre declines due to climate change. Feedstock for MMCF include virgin wood, agricultural residues (e.g., straw), and pre- and post-consumer cellulosic materials high in alpha-cellulose content. Lyocell MMCF (L-MMCF) offer [...] Read more.
Worldwide demand for man-made cellulosic fibres (MMCF) are increasing as availability of cotton fibre declines due to climate change. Feedstock for MMCF include virgin wood, agricultural residues (e.g., straw), and pre- and post-consumer cellulosic materials high in alpha-cellulose content. Lyocell MMCF (L-MMCF) offer large advantages over other MMCF processes in terms of both environmental and social impacts: the solvent for cellulosic dissolution, n-methyl-morpholine-n-oxide, can be recycled, and the process utilizes non-toxic chemicals and low amounts of water. Hemp can be a preferential cellulosic feedstock for L-MMCF as hemp cultivation results in carbon dioxide sequestration, and it requires less water, fertilizers, pesticides, and herbicides than other L-MMCF feedstock crops. These factors contribute to hemp being an environmentally conscious crop. The increased legalization of industrial hemp cultivation, as well as recent lifts on cannabis restrictions worldwide, allows accessibility to local sources of cellulose for the L-MMCF process. In addition, hemp biomass can offer a much larger feedstock for L-MMCF production per annum than other cellulosic sources, such as eucalyptus trees and bamboo. This paper offers perspectives on the agricultural, manufacturing, and economic opportunities and challenges of utilizing hemp biomass for the manufacturing of L-MMCF. Full article
(This article belongs to the Special Issue Advances in Sustainable Valorization of Natural Waste and Biomass)
Show Figures

Figure 1

Back to TopTop