Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = mammalian sex maintenance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2263 KiB  
Review
A Comparative Analysis of Mouse Imprinted and Random X-Chromosome Inactivation
by Rebecca M. Malcore and Sundeep Kalantry
Epigenomes 2024, 8(1), 8; https://doi.org/10.3390/epigenomes8010008 - 10 Feb 2024
Cited by 4 | Viewed by 3373
Abstract
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation [...] Read more.
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation. Full article
(This article belongs to the Special Issue X-Chromosome Inactivation)
Show Figures

Figure 1

12 pages, 2111 KiB  
Article
Comparison of Placental HSD17B1 Expression and Its Regulation in Various Mammalian Species
by Takashi Yazawa, Mohammad Sayful Islam, Yoshitaka Imamichi, Hiroyuki Watanabe, Kazuhide Yaegashi, Takanori Ida, Takahiro Sato, Takeshi Kitano, Shigenori Matsuzaki, Akihiro Umezawa and Yuki Muranishi
Animals 2023, 13(4), 622; https://doi.org/10.3390/ani13040622 - 10 Feb 2023
Cited by 7 | Viewed by 3205
Abstract
During mammalian gestation, large amounts of progesterone are produced by the placenta and circulate for the maintenance of pregnancy. In contrast, primary plasma estrogens are different between species. To account for this difference, we compared the expression of ovarian and placental steroidogenic genes [...] Read more.
During mammalian gestation, large amounts of progesterone are produced by the placenta and circulate for the maintenance of pregnancy. In contrast, primary plasma estrogens are different between species. To account for this difference, we compared the expression of ovarian and placental steroidogenic genes in various mammalian species (mouse, guinea pig, porcine, ovine, bovine, and human). Consistent with the ability to synthesize progesterone, CYP11A1/Cyp11a1, and bi-functional HSD3B/Hsd3b genes were expressed in all species. CYP17A1/Cyp17a1 was expressed in the placenta of all species, excluding humans. CYP19A/Cyp19a1 was expressed in all placental estrogen-producing species, whereas estradiol-producing HSD17B1 was only strongly expressed in the human placenta. The promoter region of HSD17B1 in various species possesses a well-conserved SP1 site that was activated in human placental cell line JEG-3 cells. However, DNA methylation analyses in the ovine placenta showed that the SP1-site in the promoter region of HSD17B1 was completely methylated. These results indicate that epigenetic regulation of HSD17B1 expression is important for species-specific placental sex steroid production. Because human HSD17B1 showed strong activity for the conversion of androstenedione into testosterone, similar to HSD17B1/Hsd17b1 in other species, we also discuss the biological significance of human placental HSD17B1 based on the symptoms of aromatase-deficient patients. Full article
Show Figures

Figure 1

20 pages, 939 KiB  
Article
Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum
by Samuel C. Uzoechi, Bruce A. Rosa, Kumar Sachin Singh, Young-Jun Choi, Bethany K. Bracken, Paul J. Brindley, R. Reid Townsend, Robert Sprung, Bin Zhan, Maria-Elena Bottazzi, John M. Hawdon, Yide Wong, Alex Loukas, Sergej Djuranovic and Makedonka Mitreva
Pathogens 2023, 12(1), 95; https://doi.org/10.3390/pathogens12010095 - 6 Jan 2023
Cited by 4 | Viewed by 3977
Abstract
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm’s excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and [...] Read more.
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm’s excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum, which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum. The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential. Full article
(This article belongs to the Special Issue Helminths, Anthelmintics and Anthelmintic Resistance)
Show Figures

Graphical abstract

17 pages, 4802 KiB  
Article
Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes
by Filip Pajpach, Linda Shearwin-Whyatt and Frank Grützner
Genes 2021, 12(9), 1320; https://doi.org/10.3390/genes12091320 - 26 Aug 2021
Cited by 2 | Viewed by 3548
Abstract
Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplications and functional [...] Read more.
Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplications and functional diversification has occurred in various lineages. In order to better understand the evolution of genes involved in chromosome segregation in mammals, we analyzed some of the key components in the basal mammalian lineage of egg-laying mammals. The chromosome passenger complex is a multiprotein complex central to chromosome segregation during both mitosis and meiosis. It consists of survivin, borealin, inner centromere protein, and Aurora kinase B or C. We confirm the absence of Aurora kinase C in marsupials and show its absence in both platypus and echidna, which supports the current model of the evolution of Aurora kinases. High expression of AURKBC, an ancestor of AURKB and AURKC present in monotremes, suggests that this gene is performing all necessary meiotic functions in monotremes. Other genes of the chromosome passenger complex complex are present and conserved in monotremes, suggesting that their function has been preserved in mammals. Cohesins are another family of genes that are of vital importance for chromosome cohesion and segregation at mitosis and meiosis. Previous work has demonstrated an accumulation and differential loading of structural maintenance of chromosomes 3 (SMC3) on the platypus sex chromosome complex at meiotic prophase I. We investigated if a similar accumulation occurs in the echidna during meiosis I. In contrast to platypus, SMC3 was only found on the synaptonemal complex in echidna. This indicates that the specific distribution of SMC3 on the sex chromosome complex may have evolved specifically in platypus. Full article
(This article belongs to the Special Issue Sex Chromosome Evolution and Meiosis)
Show Figures

Figure 1

14 pages, 965 KiB  
Review
Sex Maintenance in Mammals
by Rafael Jiménez, Miguel Burgos and Francisco J. Barrionuevo
Genes 2021, 12(7), 999; https://doi.org/10.3390/genes12070999 - 29 Jun 2021
Cited by 17 | Viewed by 5512
Abstract
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual [...] Read more.
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual hormones that induce the subsequent differentiation of the male reproductive tract. On the other hand, the lack of masculinizing hormones in XX embryos permits the formation of the female reproductive tract. It was long assumed that once the gonad is differentiated, this developmental decision is irreversible. However, several findings in the last decade have shown that this is not the case and that a continuous sex maintenance is needed. Deletion of Foxl2 in the adult ovary lead to ovary-to-testis transdifferentiation and deletion of either Dmrt1 or Sox9/Sox8 in the adult testis induces the opposite process. In both cases, mutant gonads were genetically reprogrammed, showing that both the male program in ovaries and the female program in testes must be actively repressed throughout the individual’s life. In addition to these transcription factors, other genes and molecular pathways have also been shown to be involved in this antagonism. The aim of this review is to provide an overview of the genetic basis of sex maintenance once the gonad is already differentiated. Full article
(This article belongs to the Special Issue Evolution and Development of Testis)
Show Figures

Figure 1

23 pages, 1497 KiB  
Review
Exogenous Oestrogen Impacts Cell Fate Decision in the Developing Gonads: A Potential Cause of Declining Human Reproductive Health
by Melanie K. Stewart, Deidre M. Mattiske and Andrew J. Pask
Int. J. Mol. Sci. 2020, 21(21), 8377; https://doi.org/10.3390/ijms21218377 - 8 Nov 2020
Cited by 13 | Viewed by 4415
Abstract
The increasing incidence of testicular dysgenesis syndrome-related conditions and overall decline in human fertility has been linked to the prevalence of oestrogenic endocrine disrupting chemicals (EDCs) in the environment. Ectopic activation of oestrogen signalling by EDCs in the gonad can impact testis and [...] Read more.
The increasing incidence of testicular dysgenesis syndrome-related conditions and overall decline in human fertility has been linked to the prevalence of oestrogenic endocrine disrupting chemicals (EDCs) in the environment. Ectopic activation of oestrogen signalling by EDCs in the gonad can impact testis and ovary function and development. Oestrogen is the critical driver of ovarian differentiation in non-mammalian vertebrates, and in its absence a testis will form. In contrast, oestrogen is not required for mammalian ovarian differentiation, but it is essential for its maintenance, illustrating it is necessary for reinforcing ovarian fate. Interestingly, exposure of the bi-potential gonad to exogenous oestrogen can cause XY sex reversal in marsupials and this is mediated by the cytoplasmic retention of the testis-determining factor SOX9 (sex-determining region Y box transcription factor 9). Oestrogen can similarly suppress SOX9 and activate ovarian genes in both humans and mice, demonstrating it plays an essential role in all mammals in mediating gonad somatic cell fate. Here, we review the molecular control of gonad differentiation and explore the mechanisms through which exogenous oestrogen can influence somatic cell fate to disrupt gonad development and function. Understanding these mechanisms is essential for defining the effects of oestrogenic EDCs on the developing gonads and ultimately their impacts on human reproductive health. Full article
(This article belongs to the Special Issue Central and Local Modulators of Reproduction and Fertility: An Update)
Show Figures

Figure 1

Back to TopTop